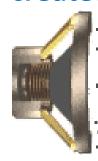
Mechanical Waves Summary

TRANSVERSE

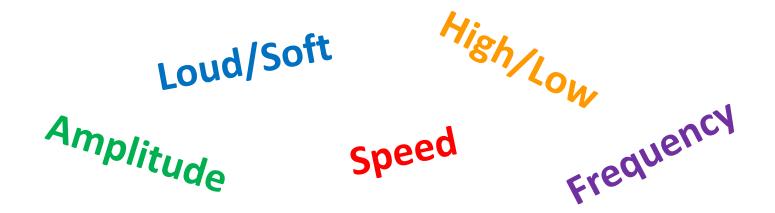
- Particles move perpendicular to the direction of energy transfer
- Cannot travel in gas
 - Examples: string, rope, water, stadium cheer, some seismic waves

- Require a medium
- Transmit energy
 - Do not transmit matter
 - Travelling or standing

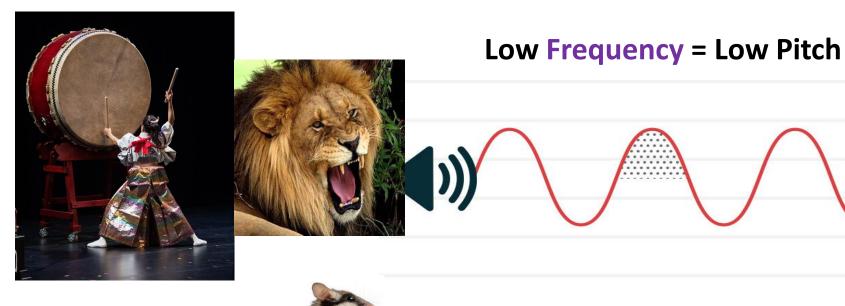

- LONGITUDINAL
 - Particles move parallel to the direction of energy transfer
 - Examples: column of air in wind instruments, sound, some seismic waves

What is SOUND?

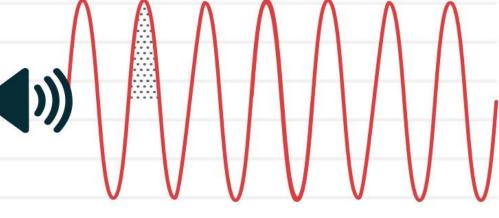
 Sound is a <u>travelling longitudinal mechanical wave</u>, that results from the back-and-forth vibration of the particles of the medium.


vibration created

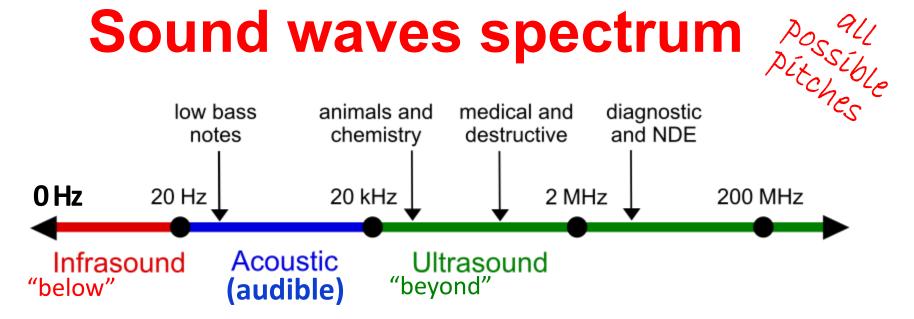
- Sound waves consist of <u>areas of high and low pressure</u> and therefore can be regarded as <u>pressure waves</u>:
 - "compressions" correspond to higher pressure
 - "expansions" or "rarefactions" correspond to lower pressure


How to describe sound?

We hear sound, but we also can visualize sound waves...



Sound waves: Pitch



High Frequency = High Pitch

Sound waves spectrum

- Humans can hear sound waves that have frequencies between about 20 Hz and 20 kHz.
- Sound waves above 20 kHz are known as ultrasound. Animals such as bats and porpoises use ultrasound for locating prey and obstacles.
- Sound waves below 20 Hz are known as infrasound. Whales, elephants and other animals can detect infrasound and use it to communicate.

Natural sounds: fun facts

- ❖ Bats use ultrasound for hunting purposes...so many nocturnal insects have good ultrasonic hearing to help them escape being caught.
- Tiger moth can even produce ultrasound "clicks" itself!

Hearing range of many medium-sized mammals, including dogs, cats and deer, extends into the ultrasound range; however they are not able to produce ultrasound themselves.

Among all animals, the lowest infrasound frequencies (~3 Hz) are produced by Sumatran rhinos.

Natural sounds: more facts

- The rumbling vocalizations of elephants extend well into infrasound range and, being extremely loud, are used for long-distance (up to 10 km or over 6 miles!) communication.
- Sources of infrasound in nature include volcanoes, avalanches, earthquakes, hurricanes, and meteorites.

What is Music?

Music (from Greek "Art of the Muses") is the art of arranging sounds in time to produce a composition through the elements of melody, harmony, rhythm, and timbre.

(this definition is from "The American Heritage Dictionary")

Nine Muses:
Calliope, Clio,
Euterpe, Thalia,
Melpomene,
Terpsichore,
Polyhymnia,
Erato, Urania.

- Both harmony (simultaneously played sounds) and melody (sequence of sounds) are based on the use of intervals.
- An interval is the difference in pitch between two sounds.

Mathematics of Intervals

• From perception point of view, musical intervals can be typically described as consonant (stable, pleasant) and dissonant (unstable, tense).

- Scientifically speaking, the human ear is a sound detector that is sensitive to RATIOS of frequencies (pitches of the sounds) rather than to just differences in establishing musical intervals.
- Mathematically, music intervals perceived to be most consonant are composed of small integer ratios of frequency.



(Examples of *small integer ratios*: 1:2, 3:2, 5:4 and so on)

This "mathematical simplicity" is believed to be the very reason for universally "pleasant" sensation of consonant intervals!

Perfect Musical Intervals

have been considered to be consonant throughout history by essentially all cultures and therefore form the basis for music scales.

Perfect 4th – 5 semitones ("here comes the bride")
Perfect 5th – 7 semitones ("twinkle, twinkle little star")
Octave – 12 semitones ("somewhere over the rainbow")