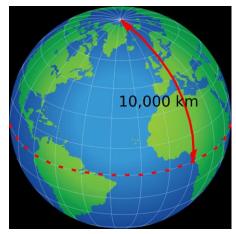
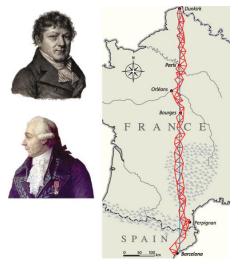
The Metric System

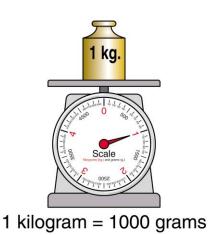



PART 2

The Meter, m (Metric, SI)

- Original definition (1791): one ten millionth
 (1/10,000,000) of the quarter of the Earth's
 meridian (distance between the North Pole and the Equator through Paris was determined based on a Pierre Méchain and Jean-Baptiste Delambre 1792-1798 survey of the length of the Earth's meridian between Dunkirk (51°N) and Barcelona (41°N) through Paris).
- 1799: platinum bar, known as the <u>mètre des</u>
 <u>Archives</u>. The International Metre Commission in Paris (1870-72, 1875): new "metric prototypes" made of 90% platinum and 10% iridium.

 Improved (1983): One meter is the distance traveled by a ray of light through a vacuum in 1/299,792,458 second. The definition in terms of the speed of light means that the meter can be realized using any light source of known frequency.


The Liter, L (Metric, non-SI)

- Unit of volume, one of three original base units in metric system circa 1799.
- Volume = Length x Width x Height
- The liter is equal to 1 cubic decimeter (10×10×10 centimeters) or 1/1,000 cubic meter.
- One liter of liquid water has a mass of almost exactly one kilogram.
- Most commonly used for fluids and solids that can be poured (which are measured by the capacity or size of their container).

 $1L = 1 \, dm^3 = 1000 \, cm^3$ 1 mL - 10 cm → = 1 dm

The Gram and the Kilogram, g and kg (Metric, SI)

- Mass: the amount of matter in an object.
- The gram, 1795: the mass of one cubic centimeter of water at the melting point of water.
- The original prototype kilogram manufactured in 1799 had a mass equal to the mass of 1.000025 liters of water at 4°C.
- 1875: The International Prototype Kilogram, a cylinder of platinum/platinum-iridium alloy.
- 2005: International
 Committee for Weights and Measures recommended that the kilogram be redefined in terms of a fundamental constant of nature.

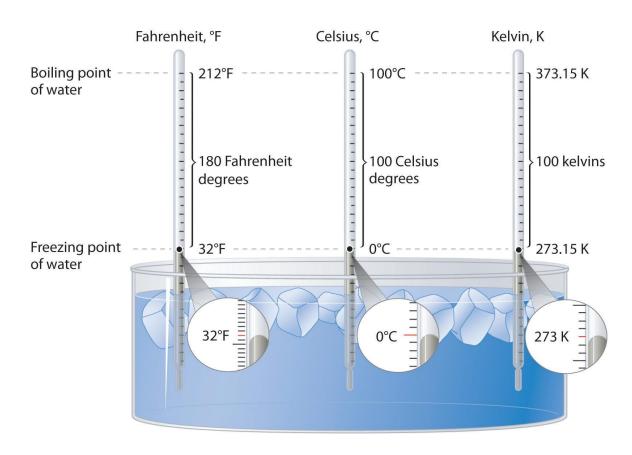
Prototypes

Historically, <u>prototypes</u> ("originals") of base units were kept in the *Archives Nationales* in France with <u>copies manufactured</u> and <u>distributed</u> among other countries - members of The Metre Convention of 1875 (and subsequent conventions).

IPK, International Prototype Kilogram

The Second, s (Metric, SI)

- Earliest documented scientific use of second as a unit of time: ~1000 by Persian scholar al-Biruni.
- Carl Friedrich Gauss, 1832: proposed to use second as a base unit.
- Original definition: 1/86,400 of a mean solar day (the Earth's rotation is slowing down, so in this definition a second was obviously not very good...)
- International Astronomical Union, 1952-1956 redefinition: the fraction 1/31,556,925.9747 of the tropical year 1900.
- <u>Improved definition</u> (developed by General Conference on Weights and Measures in 1967 and refined in 1997): definition using atomic clocks as the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom at rest at a temperature of 0 K.
- <u>SI prefixes</u> starting from millisecond are commonly used to measure time <u>less than a second</u> (submultiples); <u>non-SI units</u> *minutes, hours, days, Julian years, Julian centuries,* and *Julian millennia* are used to measure <u>multiples of second</u>.

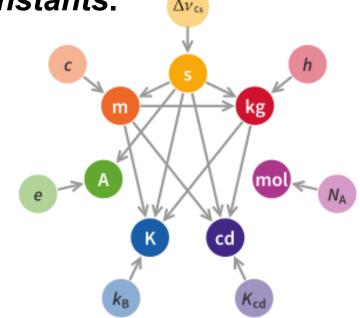


6s "lone"

electron

The Kelvin, K (SI)

- Unit of thermodynamic temperature (absolute temperature).
- Original (1743): the centigrade scale (renamed "Celsius" in 1948) is obtained by assigning 0°C to the freezing point of water and 100°C to the boiling point of water both at a pressure of one standard atmosphere with *mercury* being the working material.


• Improved (1967): 1/273.16 of the thermodynamic temperature of the triple point of water (triple point of water = 273.16 K = 0.01°C by definition).

Fundamental SI Units

As Metric System evolved into the SI system, seven mutually independent fundamental units have been selected:

- Meter (length)
- 2. Kilogram (mass)
- 3. **Second** (time)
- 4. **Kelvin** (temperature)
- 5. **Ampere** (electric current)
- 6. Candela (luminous intensity)
- 7. **Mole** (count of elementary entities like atoms or molecules)

On May 20, 2019, all seven have been redefined based on fundamental physical constants.

Fundamental Physical Constants

The units in the revised SI are based completely on seven unchanging quantities or "universal constants", including:

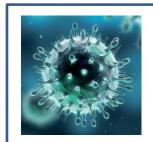
- the speed of light in vacuum, c=299,792,458 meters per second, which is the "speed limit" in the Universe
- the *elementary charge*, $e=1.602176634 \times 10^{-19}$ coulombs, which is the amount of electric charge in an electron
- the *Planck* constant, h=6.626 070 15 × 10⁻³⁴ Joule seconds, which in quantum mechanics defines the minimum size ("quantum") of the packets of energy exchanged by matter
- the *Boltzmann* constant, $k=1.380649 \times 10^{-23}$ joules per kelvin, which relates an object's energy to its temperature
- To learn about Δv_{cs} , K_{cd} , and N_A , visit the NIST webpage at https://www.nist.gov/si-redefinition/meet-constants

The <u>values of the constants</u> are the <u>same everywhere</u> in the Universe, so they can be regarded as "invariants of nature".

Metric Examples

Any US paper currency note (\$1, \$5, \$10, \$20) has a mass of 1 g; the mass of a nickel is 5 g; the mass of a penny is 2.5 grams.

A typical doorknob is ~1 m high.



The mass of a gold bar is *precisely* 1 kg.

A paperclip is about 1 g.

Diameter of Influenza virus is ~20 nm.

The diameter of a CD or a DVD is 12 cm; the diameter of the center hole is 15 mm.

Typical airport runway length is 3.35 km; Boeing 767 jet is 64 m long.

