Handout 3

1. Number of Divisors of a Number N

The number of divisors for a given number N includes 1 and the number itself.

- First write N as a product of prime numbers: $N = p_1^{e_1} \cdot p_2^{e_2} ... p_n^{e_n}$
- Take each exponent of the primes and add 1 to it: $e_1 + 1, e_2 + 1, ..., e_n + 1$
- Multiply these together and you will get the number of divisors: $\#divisors = (e_1 + 1) \cdot (e_2 + 1) \dots (e_n + 1)$

Problem:

1. How many divisors has 7, 8, 10, 24, 60?

2. Sum of all divisors of a Number N

To find the sum of all divisors of a number:

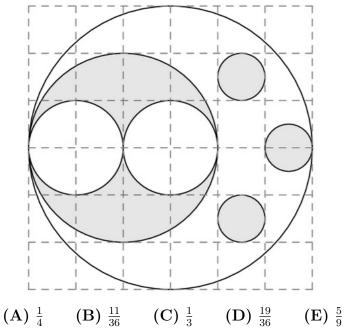
- write the prime factorization of the number: $N = p_1^{e_1} \cdot p_2^{e_2} \dots p_n^{e_n}$
- for each prime, add up all prime to increasing powers starting from zero and up to the last exponent in the prime factorization:

$$(1+p_1+p_1^2+\ldots+p_1^{e_1}), (1+p_2+p_2^2+\ldots+p_2^{e_2}), \ldots, (1+p_n+p_n^2+\ldots+p_n^{e_n})$$

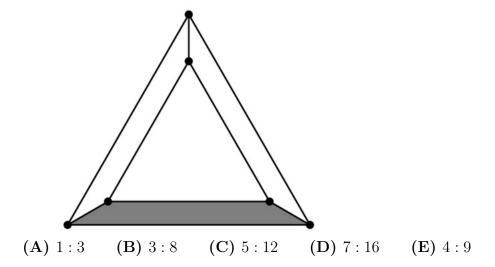
• multiply these numbers:

Sum of divisors =
$$(1+p_1+p_1^2+...+p_1^{e_1})\cdot(1+p_2+p_2^2+...+p_2^{e_2})...(1+p_n+p_n^2+...+p_n^{e_n})$$

Problems:


1. What is the sum of all divisors of 5? 10? 12? 32?

3. Product of all divisors of a number N


Let d be the number of divisors of N. Then the product of all divisors is: $N^{\frac{d}{2}}$

- 4. Math Battle with problems from AMC 8 and Mathcounts
- 1. What is the greatest three digit positive number that is divisible by 5, 7 and 9? (Mathcounts)
- 2. How many odd divisors does 240 have? How many even divisors does 240 have?
- **3.** What is the smallest positive number with 3 divisors?
- **4.** What is the smallest positive number with 4 divisors?
- **5.** If a number has exactly 5 divisors, how many divisors does n^2 have?
- **6.** What is the smallest positive odd integer that has exactly 12 divisors?
- 7. What is the prime factorization of the product of the divisors of 45?
- 8. A number a has 2b factors. What is the product of the factors of a in terms of a and b?

9. The figure below shows a large white circle with a number of smaller white and shaded circles in its interior. What fraction of the interior of the large white circle is shaded? (AMC 8)

10. An equilateral triangle is placed inside a larger equilateral triangle so that the region between them can be divided into three congruent trapezoids, as shown below. The side length of the inner triangle is $\frac{2}{3}$ the side length of the larger triangle. What is the ratio of the area of one trapezoid to the area of the inner triangle? (AMC 8)

