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Geometry.  

The Method of the Center of Mass (mass points): Solving problems using the 

Law of Lever (mass points). Extended Ceva theorem. Menelaus theorem.  

 

Theorem (Law of Lever).  Masses (weights) balance at distances from the 

fulcrum, which are inversely proportional to their magnitudes,  

𝐷

𝑑
=

𝑀

𝑚
 

 
⇔ 𝑀𝑑 = 𝑚𝐷 

For commensurate masses, = 𝑝 ∙ 𝑤, 𝑚 = 𝑞 ∙ 𝑤, 𝑝, 𝑞 ∈ ℕ , the Law was proven 

using the main “trick” of the mass points method: each of the two masses is 

split into 2𝑝 and 2𝑞 smaller masses, 𝑤/2, respectively, which are then re-

positioned in pairs around the original masses so that positions of the center 

of mass (COM) for each of the two original masses do not change, but the COM 

position for the whole system becomes obvious.   

To prove the Law of Lever for incommensurate masses, we first make the 

following observation.  

Lemma. If two commensurate masses 𝑚 and 𝑀 are placed at distances 𝐷 and 

𝑑 from the fulcrum, respectively, then 𝑀 goes up if and only if 𝑀𝑑 < 𝑚𝐷,  

(𝑀 𝑟𝑖𝑠𝑒𝑠 𝑢𝑝)
 

⇔ (𝑀𝑑 < 𝑚𝐷) 

First, if distances 𝑑 and 𝐷 are incommensurate, we move mass 𝑀 slightly, to a 

position 𝑑′ which is commensurate with 𝐷, but such that 𝑀 still rises up. 

Therefore, we only need to consider case when 𝑑 and 𝐷 are commensurate. 
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Since 𝑀 rises up, we need to increase mass 𝑀 to achieve balance. Let 𝑀′ > 𝑀 

be such that  𝑀′ and 𝑚 balance. Using the Law of Lever for commensurate 

masses we have, 𝑀′ = 𝑚
𝐷

𝑑
 (because distances are commensurate, so are the 

masses). Since 𝑀 < 𝑀′ = 𝑚
𝐷

𝑑
, it follows that 𝑀𝑑 < 𝑚𝐷. Conversely, if 𝑀𝑑 <

𝑚𝐷 we can increase it to 𝑀′ = 𝑚
𝐷

𝑑
, which balances 𝑚. Decreasing mass from 

back to 𝑀 will cause it to rise.  

Corollary. The converse statement immediately follows via excluded middle, 

(𝑀 𝑔𝑜𝑒𝑠 𝑑𝑜𝑤𝑛)
 

⇔ (𝑀𝑑 > 𝑚𝐷) 

Proof  (case of incommensurate masses). Let now two incommensurate 

masses 𝑚 and 𝑀, be placed at distances 𝑑 and 𝐷 from the fulcrum, 

respectively, such that the Law of Lever is satisfied, 𝑀𝑑 = 𝑚𝐷. Assume that 

the masses nevertheless do not balance, for example, 𝑀 goes down. Decrease 

mass 𝑀 by a small amount, turning it into 𝑀′, such that it still goes down, but 

is now commensurate with 𝑚. Now 𝑚 and 𝑀′ are commensurate, and 𝑚𝐷 >

𝑀′𝑑, which means that 𝑀′ should rise. This contradicts our assumption, so 𝑚 

and 𝑀 must balance. Note that in the above we used a non-trivial fact that a 

commensurate mass, or distance can be found that differs from the given 

incommensurate one by an arbitrarily small amount. This means that for any 

irrational number there exists a rational number, which differs from it as little 

as we want, i. e. that rational numbers are dense.  

  



Solving problems using the Law of Lever. 

For the objects in the uniform gravitational field, the Center of Gravity and the 

Center of Mass are equivalent. Archimedes uses the concept by considering 

bodies with the uniform density and defining the Center of Gravity based on 

postulated properties. 

Heuristic Definitions of the Center of Mass (Center of Gravity) known to 

Greeks.  

1. The point such that if suspended at it, an 

object will remain motionless in the 

equilibrium, independent of the position that 

it is placed. 

2. The point common to all the lines passing 

through the point at which the object is 

suspended 

3. The point common to all lines on which the 

object balances. 

Archimedes’ postulates on the properties of the Center of Gravity (COM).  

1. The COM of similar figures are similarly situated.  

2. The COM of a convex figure lies within the figure. 

3. If an object is cut in two pieces, then its COM 

lies on the line joining the COM’s of the 

pieces, and its position satisfies the Law of 

Lever. 

However, the situation is much simpler if we only consider point masses.  

Properties of the Center of Mass for a system of point masses. 

1. Every system of finite number of point masses has unique center of 
mass (COM).  



2. For two point masses, 𝑚1 and 𝑚2, the COM belongs to the segment 
connecting these points; its position is determined by the Archimedes 
lever rule: the point’s mass times the distance from it to the COM is the 
same for both points, 𝑚1𝑑1 = 𝑚2𝑑2.  

3. The position of the system’s center of mass does not change if we move 
any subset of point masses in the system to the center of mass of this 
subset. In other words, we can replace any number of point masses with 
a single point mass, whose mass equals the sum of all these masses and 
which is positioned at their COM.  

Solving problems using the COM.  

Given a system of points and lines, one can derive various relations, such as 

concurrence of particular lines connecting some of the points, or the ratio of 

the lengths of different segments by associating certain masses with these 

points (i.e. placing point masses at their positions) and considering the center 

of mass of the obtained system of mass points.  

Exercise. Prove that the medians of an arbitrary triangle 

𝐴𝐵𝐶 are concurrent (cross at the same point 𝑀).  

Exercise. Prove that the bisectors of an arbitrary triangle 

𝐴𝐵𝐶 are concurrent (cross at the same point 𝑂).  

Extended Ceva and Menelaus theorem.  

Theorem (Extended Ceva). Segments (Cevians) 

connecting vertices 𝐴, 𝐵 and 𝐶, with points 𝐴′, 𝐵′ 

and 𝐶′ on the sides, or on the lines that suitably 

extend the sides 𝐵𝐶, 𝐴𝐶, and 𝐴𝐵, of triangle 𝐴𝐵𝐶, 

are concurrent if and only if,  

|𝐴𝐶′|

|𝐶′𝐵|

|𝐵𝐴′|

|𝐴′𝐶|

|𝐶𝐵′|

|𝐵′𝐴|
= 1 

Proof. We have already proven this theorem for the case when points 𝐴′, 𝐵′ 

and 𝐶′ lie on the sides, but not on the lines extending the sides as it is shown in 
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the figure. Let us now consider this latter case. Let us first load points 𝐴′, B 

and 𝐶′ with masses 𝑚𝐴′, 𝑚𝐵 and 𝑚𝐶′ such that point 𝐴 is the center of mass for 

𝑚𝐵 and 𝑚𝐶′, 𝑚𝐵|𝐴𝐶′| = 𝑚𝐶′|𝐴𝐵|, and point 𝐶 is the COM for 𝑚𝐴′ and 𝑚𝐵, 

𝑚𝐴′|𝐵𝐶| = 𝑚𝐵|𝐴′𝐶|. Then, the COM of all three masses at the vertices of the 

triangle 𝐴′𝐵𝐶′ is at the point 𝑂, which is the intersection of 𝐴𝐴′ and 𝐶𝐶′. Let 

𝐵𝑂 cross side 𝐴𝐶 at point 𝐵′. Adding mass to vertex 𝐵 would move the COM of 

the three masses along line 𝐵𝑂, because the COM of the initial 3 masses is at 𝑂. 

Let us add another mass 𝑚𝐵 to vertex B, so that the total mass at this vertex is 

2𝑚𝐵.The resulting system of masses then has the same COM as two masses, 

𝑚𝐵 + 𝑚𝐴′ and 𝑚𝐵 + 𝑚𝐶′ at points 𝐴 and 𝐶, respectively. This COM is common 

to 𝐴𝐶 and 𝐵𝑂, and therefore is at point 𝐵′, so (𝑚𝐵 + 𝑚𝐴′)|𝐴𝐵 ′| = (𝑚𝐵 +

𝑚𝐶′)|𝐵′𝐶|. Hence, we obtain, 

|𝐴𝐶′|

|𝐶′𝐵|

|𝐵𝐴′|

|𝐴′𝐶|

|𝐶𝐵′|

|𝐵′𝐴|
=

1

1 +
𝑚𝐶′

𝑚𝐵

(1 +
𝑚𝐴′

𝑚𝐵
)

𝑚𝐵 + 𝑚𝐶′

𝑚𝐵 + 𝑚𝐴′
= 1 

Theorem (Menelaus). Points 𝐴′, 𝐵′ and 𝐶′ on the sides, or on the lines that 

suitably extend the sides 𝐵𝐶, 𝐴𝐶, and 𝐴𝐵, of triangle ABC, are collinear 

(belong to the same line) if and only if,  

|𝐴′𝐵|

|𝐴′𝐶|

|𝐵′𝐶|

|𝐵′𝐴|

|𝐶′𝐴|

|𝐶′𝐵|
= 1 

Menelaus's theorem provides a criterion for 

collinearity, just as Ceva's theorem provides a 

criterion for concurrence.  

Proof (similarity). The statement could be proven 

with, or without using the method of point masses.  

First, assume the points are collinear and consider 

rectangular triangles obtained by drawing 

perpendiculars onto the line A’B’. Using their 

similarity, one has 
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|𝐴′𝐵|

|𝐴′𝐶|
=

ℎ𝐵

ℎ𝐶
,
|𝐵′𝐶|

|𝐵′𝐴|
=

ℎ𝐶

ℎ𝐴
,
|𝐶′𝐴|

|𝐶′𝐵|
=

ℎ𝐴

ℎ𝐵
 

Wherefrom the statement of the theorem is obtained by multiplication 

(Coxeter & Greitzer).  

Proof (point masses). Alternatively, let us load points 𝐴, 𝐴′ and 𝐶 in the upper 

Figure with the point masses 𝑚1, 𝑚2 and 𝑚3, respectively. We select 𝑚1, 𝑚2 

and 𝑚3 such that 𝐵′ is the COM of 𝑚1(𝐴) and 𝑚3(𝐶), and 𝐵 is the COM of 

𝑚2(𝐴′)  and 𝑚3(𝐶). The COM of all 3 masses belongs to both segments 𝐴𝐵 and 

𝐴′𝐵′, which means that it is at point 𝐶′. Then, 

|𝐴′𝐵|

|𝐴′𝐶|
=

𝑚3

𝑚2 + 𝑚3
,
|𝐵′𝐶|

|𝐵′𝐴|
=

𝑚1

𝑚3
,
|𝐶′𝐴|

|𝐶′𝐵|
=
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Wherefrom the Menelaus theorem is obtained by multiplication. The case 

shown in the lower figure is considered in a similar way.  


