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Geometry.

The Method of the Center of Mass (mass points): Solving problems using the
Law of Lever (mass points). Extended Ceva theorem. Menelaus theorem.
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Theorem (Law of Lever). Masses (weights) balance at distances from the
fulcrum, which are inversely proportional to their magnitudes,

D M

—=— © Md =mD

d m
For commensurate masses,=p-w,m = q-w, p,q € N, the Law was proven
using the main “trick” of the mass points method: each of the two masses is
splitinto 2p and 2q smaller masses, w/2, respectively, which are then re-
positioned in pairs around the original masses so that positions of the center
of mass (COM) for each of the two original masses do not change, but the COM
position for the whole system becomes obvious.

To prove the Law of Lever for incommensurate masses, we first make the
following observation.

Lemma. If two commensurate masses m and M are placed at distances D and
d from the fulcrum, respectively, then M goes up if and only if Md < mD,

(M rises up) & (Md < mD)

First, if distances d and D are incommensurate, we move mass M slightly, to a
position d’ which is commensurate with D, but such that M still rises up.
Therefore, we only need to consider case when d and D are commensurate.



Since M rises up, we need to increase mass M to achieve balance. Let M’ > M
be such that M’ and m balance. Using the Law of Lever for commensurate
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masses we have, M' = m " (because distances are commensurate, so are the
. D . .

masses). Since M < M’ = m-, it follows that Md < mD. Conversely, if Md <
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mD we can increase itto M' = m = which balances m. Decreasing mass from

back to M will cause it to rise.
Corollary. The converse statement immediately follows via excluded middle,
(M goes down) & (Md > mD)

Proof (case of incommensurate masses). Let now two incommensurate
masses m and M, be placed at distances d and D from the fulcrum,
respectively, such that the Law of Lever is satisfied, Md = mD. Assume that
the masses nevertheless do not balance, for example, M goes down. Decrease
mass M by a small amount, turning it into M’, such that it still goes down, but
is now commensurate with m. Now m and M’ are commensurate, and mD >
M'd, which means that M’ should rise. This contradicts our assumption, so m
and M must balance. Note that in the above we used a non-trivial fact that a
commensurate mass, or distance can be found that differs from the given
incommensurate one by an arbitrarily small amount. This means that for any
irrational number there exists a rational number, which differs from it as little
as we want, i. e. that rational numbers are dense.



Solving problems using the Law of Lever.

For the objects in the uniform gravitational field, the Center of Gravity and the
Center of Mass are equivalent. Archimedes uses the concept by considering
bodies with the uniform density and defining the Center of Gravity based on
postulated properties.

Heuristic Definitions of the Center of Mass (Center of Gravity) known to
Greeks.

1. The point such that if suspended at it, an
object will remain motionless in the
equilibrium, independent of the position that
it is placed.

2. The point common to all the lines passing
through the point at which the object is
suspended

3. The point common to all lines on which the
object balances.

Archimedes’ postulates on the properties of the Center of Gravity (COM).

1. The COM of similar figures are similarly situated.
2. The COM of a convex figure lies within the figure.
3. If an object is cut in two pieces, then its COM
lies on the line joining the COM’s of the 100 kg

pieces, and its position satisfies the Law of
Lever. - I"""l|||,|||#?

However, the situation is much simpler if we only consider point masses.
Properties of the Center of Mass for a system of point masses.

1. Every system of finite number of point masses has unique center of
mass (COM).



2. For two point masses, m; and m,, the COM belongs to the segment
connecting these points; its position is determined by the Archimedes
lever rule: the point’s mass times the distance from it to the COM is the
same for both points, m;d; = m,d,.

3. The position of the system’s center of mass does not change if we move
any subset of point masses in the system to the center of mass of this
subset. In other words, we can replace any number of point masses with
a single point mass, whose mass equals the sum of all these masses and
which is positioned at their COM.

Solving problems using the COM.

Given a system of points and lines, one can derive various relations, such as
concurrence of particular lines connecting some of the points, or the ratio of
the lengths of different segments by associating certain masses with these
points (i.e. placing point masses at their positions) and considering the center
of mass of the obtained system of mass points.

Exercise. Prove that the medians of an arbitrary triangle
ABC are concurrent (cross at the same point M).

Exercise. Prove that the bisectors of an arbitrary triangle
ABC are concurrent (cross at the same point 0).

Extended Ceva and Menelaus theorem.

Theorem (Extended Ceva). Segments (Cevians)
connecting vertices A, B and C, with points A’, B’
and C' on the sides, or on the lines that suitably
extend the sides BC, AC, and AB, of triangle ABC,
are concurrent if and only if,

|AC'| |BA'| |CB'| _
|C'B||A'C||B’'A|

Proof. We have already proven this theorem for the case when points A’, B
and C’ lie on the sides, but not on the lines extending the sides as it is shown in



the figure. Let us now consider this latter case. Let us first load points A’, B
and C’ with masses m,,, mz and m, such that point A is the center of mass for
mg and m,, mg|AC'| = m¢,|AB|, and point C is the COM for m,, and my,
my,|BC| = mg|A'C|. Then, the COM of all three masses at the vertices of the
triangle A'BC’ is at the point O, which is the intersection of AA" and CC'. Let
BO cross side AC at point B'. Adding mass to vertex B would move the COM of
the three masses along line BO, because the COM of the initial 3 masses is at 0.
Let us add another mass my to vertex B, so that the total mass at this vertex is
2mg.The resulting system of masses then has the same COM as two masses,
mg + my, and mp + m, at points A and C, respectively. This COM is common
to AC and BO, and therefore is at point B', so (mg + my,)|AB'| = (mg +
m,)|B’C|. Hence, we obtain,
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Theorem (Menelaus). Points A, B’ and C’ on the sides, or on the lines that
suitably extend the sides BC, AC, and AB, of triangle ABC, are collinear
(belong to the same line) if and only if,

|A'B| |B'C| |C'A| _
|A’C| |B’A| |C'B|

Menelaus's theorem provides a criterion for
collinearity, just as Ceva's theorem provides a
criterion for concurrence.

Proof (similarity). The statement could be proven
with, or without using the method of point masses.

First, assume the points are collinear and consider
rectangular triangles obtained by drawing
perpendiculars onto the line A’B’. Using their
similarity, one has




|A'B| _hg |B'Cl _hc |C'Al _ hy
|A’C] ~ h.'|B'A|  hy'|C'B|  hp

Wherefrom the statement of the theorem is obtained by multiplication
(Coxeter & Greitzer).

Proof (point masses). Alternatively, let us load points 4, A" and C in the upper
Figure with the point masses m,, m, and ms, respectively. We select m;, m,
and ms such that B’ is the COM of m; (A) and m5(C), and B is the COM of
m,(A") and m3(C). The COM of all 3 masses belongs to both segments AB and
A'B’, which means that it is at point C'. Then,

|A'Bl  ms |B'C] _my [C'A] _ my+m;
|A'C]  m, +m3’|B'A] m3’|C'B]  my

Wherefrom the Menelaus theorem is obtained by multiplication. The case
shown in the lower figure is considered in a similar way.



