November 2, 2025 Math 9
Geometry.

Selected problems on similar triangles (from last homeworks).

Problem 1(5). Prove that altitudes of any triangle are the bisectors in another
triangle, whose vertices are the feet of these altitudes (hint: prove that the line
connecting the feet of two altitudes of a triangle cuts off a triangle similar to

it).

Solution. Notice similar right triangles,

ACH,~BCH,, which implies, 125} = 1<Hal,
|BC| — [CHp|

Therefore, CH,H,~ABC. Similarly, from
CAH.~BAH,, it follows that AH,H.~ABC, and
from ABH,~BCH_. that BH.H,~ABC.

Problem 2(2). Rectangle DEFG is inscribed in triangle ABC such that the side
DE belongs to the base AB of the triangle, while points F and G belong to sides
BC abd CA, respectively. What is the largest area of rectangle DEFG?
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Solution. Notice similar triangles, CDE~ABC, (@
wherefrom the vertical side of the rectangle is, xicHl
_ _ no_ |DE| D, H| \E
IDG| = |EF| = |CH| — |CH'| _( |AB|) ICH]|, e
so that the area of the rectangle is, Spgpg = A ce A F®
IDE|IDGI| = |DE| (1 - 221) |CH| = S S =S5 = S = 15
|AB| x2+(1-x)2 = 1-x+2x2 = £+2(x-3)) >= £
DE DE DE DE
IDE] (1 - u) |AB||CH| = £ (1 - u) 2S,5c-
|AB| |AB| |AB| |AB| o »
. . C
Using the geometric-arithmetic mean . .
IDE| . _|DE|
! y’ |A B| |AB| 2 4 D E D E
where the largest value of the left side is
|DE| |DE| A ' B A G FB
achieved when — 5] =1- B/ and therefore ¢ F J
DC || CB,EC || AC, Syes Spec
SDEFG = ESABC' There are a number of other SAGD+SEFB+SDEC=sumDoEf 'rheDZreas of shaded friangles >= £S5 ,,.

possible solutions, some of which are shown in the figures.



The Law of Lever. The Method of the Center of Mass.

Archimedes’ Law of Lever.

"Give me a place to stand on, and I will move the earth."

quoted by Pappus of Alexandria in his Synagoge, Book VIII, c. AD 340

Archimedes of Syracuse

Born c. 287 BC
Syracuse, Sicily
Magna Graecia

Died c. 212 BC (aged
around 75), Syracuse

Archimedes of Syracuse generally considered the
greatest mathematician of antiquity and one of the
greatest of all time. Archimedes anticipated modern
calculus and analysis by applying concepts of
infinitesimals and the method of exhaustion to derive
and rigorously prove a range of geometrical theorems,
including the area of a circle, the surface area and
volume of a sphere, and the area under a parabola.

He was also one of the first to apply mathematics to
physical phenomena, founding hydrostatics and statics,
including an explanation of the principle of the lever.

He is credited with designing innovative machines, such
as his screw pump, compound pulleys, and defensive
war machines to protect his native Syracuse from the
Roman invasion.

Archimedes derives the Law of Lever from several simple axioms

(assumptions), which summarize the everyday experience, in a manner

similar to those in Euclidean geometry.

Axiom 1. Equal weights at equal distances from the fulcrum balance. Equal
weights at unequal distance from the fulcrum do not balance, but the weight
at the greater distance will tilt its end of the lever down.
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Axiom 2. If, when two weights balance, we add something to one of the
weights, they no longer balance. The side holding the weight we increased
goes down.

Axiom 3. If, when two weights balance, we take something away from one of
them, they no longer balance. The side holding the weight we did not change

goes down.
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Archimedes then proves the inverse statements as propositions (theorems).

Proposition 1. Weights that balance at equal distances from the fulcrum are
equal.

Proposition 2. Unequal weights at equal distances from the fulcrum do not
balance, but the side holding the heavier weight goes down.

Proposition 3. Unequal weights balance at unequal distances from the
fulcrum, the heavier weight being at the shorter distance.

Proposition 4. If two equal weights have different centers of gravity then the
center of gravity of the two together is the midpoint of the line segment
joining their centers of gravity.
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Proposition 4 is just a rephrase of the Axiom 1, where Archimedes tacitly
introduces the notion of the Center of Gravity (Center of Mass). The way to
understand the Proposition 4 is to treat the entire weight as if it is located at a
single point, its center of gravity. In other words, we can picture each weight
(mass) as concentrated in a single point, i. e. as a Point Mass. We shall use
terms weight and mass interchangeably, assuming that weight is associated
with a mass in the homogeneous gravitation field, and therefore is
proportional to the mass. The following observation immediately follows from
the Proposition 4.

Corollary. If an even number of equal weights have their centers of gravity
situated along a straight line such that the distances between the consecutive
weights are all equal, then the center of gravity of the entire system is the
midpoint of the line segments joining the centers of gravity of the two weights
in the middle.
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At this point Archimedes proves the Law of Lever, first only for commensurate
weights.

Proposition 5. Commensurate weights (masses) balance at distances from the

: : : : : d _M
fulcrum, which are inversely proportional to their magnitudes, o=

8 m=2w
. A
D=2I D=5l
10x1/2w . 4x1/2w
' M=5w L
£ m=2w
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Proof. Let w be the greatest common measure of weights (masses) m and M,
m = pw, M = nw, {p,n} € N. Let us split weight M into 2n smaller pieces,
each of weight w/2, and weight m into 2p smaller pieces of weight w/2. Let us
now split the segment connecting M and m into n + p congruent smaller
segments, and also mark n such segments on the opposite side of weight M
and p such segments on the opposite side of weight m. Let us now place all
2(n + p) smaller weights w at the centers of these 2(n + p) segments as
shown in the Figure. Clearly, since each of the initial weights was split into an
even number of equal pieces, which were placed symmetrically around its
initial position, the resultant system of smaller weights has the same center of
gravity as the original weight. On the other hand, the obtained system of

2(n + p) weights w/2 has the center of gravity in the middle, at a distance of p

segments from the position of weight M and n segments from the position of

weight m, as illustrated in the Figure. Therefore, 2=E_ E’ which proves the
d n M

Law of Lever for the commensurate weights. The theorem for the
incommensurate weights is then proven by reducing to contradiction.

Theorem (Law of Lever). Masses (weights) balance at distances from the
fulcrum, which are inversely proportional to their magnitudes,

For commensurate masses,=p-w,m = q-w, p,q € N, the Law was proven
using the main “trick” of the mass points method: each of the two masses is
split into 2p and 2q smaller masses, w/2, respectively, which are then re-
positioned in pairs around the original masses so that positions of the center
of mass (COM) for each of the two original masses do not change, but the COM
position for the whole system becomes obvious.



In order to prove the Law of Lever for incommensurate masses, we first make
the following observation.

Lemma. If two commensurate masses m and M are placed at distances D and
d from the fulcrum, respectively, then M goes up if and only if Md < mD,

(M rises up) & (Md < mD)

First, if distances d and D are incommensurate, we move mass M slightly, to a
position d’ which is commensurate with D, but such that M still rises up.
Therefore, we only need to consider case when d and D are commensurate.
Since M rises up, we need to increase mass M to achieve balance. Let M’ > M
be such that M’ and m balance. Using the Law of Lever for commensurate

D .

masses we have, M' = m - (because distances are commensurate, so are the
. D . .

masses). Since M < M' = m-, it follows that Md < mD. Conversely, if Md <

. . D . .
mD we can increase itto M' = m = which balances m. Decreasing mass from

back to M will cause it to rise.
Corollary. The converse statement immediately follows via excluded middle,
(M goes down) & (Md > mD)

Proof (case of incommensurate masses). Let now two incommensurate
masses m and M, be placed at distances d and D from the fulcrum,
respectively, such that the Law of Lever is satisfied, Md = mD. Assume that
the masses nevertheless do not balance, for example, M goes down. Decrease
mass M by a small amount, turning it into M’, such that it still goes down, but
is now commensurate with m. Now m and M’ are commensurate, and mD >
M'd, which means that M’ should rise. This contradicts our assumption, so m
and M must balance. Note that in the above we used a non-trivial fact that a
commensurate mass, or distance can be found that differs from the given
incommensurate one by an arbitrarily small amount. This means that for any
irrational number there exists a rational number, which differs from it as little
as we want, i. e. that rational numbers are dense.



Method of the Center of Mass (Mass Points).

Definition. For two point masses, m, and mg at points 4 and B, the center of
mass lies at a point C’ on the straight line segment |AB|, such that,

|AC"| __Mmp
IC'B]  my,

When finding the center of mass in a system of point masses, one can replace
any pair of masses, my and mg, with a single point mass having the total mass
my + mg, placed at the center of mass of the pair.

The following important properties of the Center of Mass follow immediately.

1. Every system of finite number of point masses has unique center of
mass (COM).

2. For two point masses, the COM belongs to the segment connecting these
points; its position is determined by the Archimedes lever rule: the
point’s mass times the distance from it to the COM is the same for both
points.

3. The position of the system’s center of mass does not change if we move
any subset of point masses in the system to the center of mass of this
subset. In other words, we can replace any number of point masses with
a single point mass, whose mass equals the sum of all these masses and
which is positioned at their COM.

Ceva’'s Theorem: Point Masses. B

We select masses, my,, mg, and m. such that
the corresponding centers of mass for each £
!
. . ) ) ) : +
pair are at points A’, B’ and C’, respectively. C <P
Then, £

|AB'| |cA"| |BC"| _ m¢ mp myu _
|B'C| |A'B| |C'A| my mc mp




