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Geometry.  

“Direct” and “Inverse” Theorems.  

Each theorem consists of premise and conclusion. Premise is a proposition 

supporting or helping to support a conclusion.  

If we have two propositions, 𝐴 (premise) and 𝐵 (conclusion), then we can 

make a proposition 𝐴 
 

⇒  𝐵 (If 𝐴 is truth, then 𝐵 is also truth, 𝐴 is sufficient for 

𝐵, or 𝐵 follows from 𝐴, or 𝐵 is necessary for 𝐴). This statement is sometimes 

called the “direct” theorem and must be proven.  

Or we can construct a proposition 𝐴 
 

⇐  𝐵 (𝐴 is truth only if 𝐵 is also truth, 𝐴 

is necessary for 𝐵, or 𝐴 follows from 𝐵, 𝐵 is sufficient for 𝐴), which is 

sometimes called the “inverse” theorem, and also must be proven.  

While some theorems offer only necessary or only sufficient condition, most 

theorems establish equivalence of two propositions, 𝐴
 

⇔ 𝐵.  

Ceva’s Theorem.  

Definition. Cevian is a line segment in a triangle, which joins a vertex with a 
point on the opposite side. 

Theorem (Ceva). In a triangle 𝐴𝐵C, three 

cevians 𝐴𝐴′, 𝐵𝐵′, and 𝐶𝐶′ are concurrent 

(intersect at a single point 𝑂) if and only if  

|𝐴𝐵′|

|𝐵′𝐶|
∙

|𝐶𝐴′|

|𝐴′𝐵|
∙

|𝐵𝐶′|

|𝐶′𝐴|
= 1 

This theorem was published by Giovanni 
Ceva in his 1678 work De lineis rectis.  

 



Direct Ceva’s theorem. Geometrical proof.  

For the Ceva’s theorem the premise (A) is “Three Cevians in a triangle 𝐴𝐵𝐶, 

𝐴𝐴′, 𝐶𝐶′, 𝐵𝐵′, are concurrent”. The conclusion (B) is,  

|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1. The full statement of the “direct” theorem is 𝐴

 
⇒ 𝐵, 

i.e., 

If three cevians in a triangle 𝐴𝐵𝐶, 𝐴𝐴′, 𝐶𝐶′, 𝐵𝐵′, are concurrent, then 

|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1 is true. From 𝐴 follows 𝐵, 𝐴 

 

⇒ 𝐵. Again, premise in 

the “direct” theorem provides sufficient condition for the conclusion to hold. 

Clearly, the conclusion 𝐵 is the necessary condition for the premise 𝐴 to hold. 

Proof. Consider triangles 𝐴𝑂𝐵, 𝐵𝑂𝐶 and 𝐶𝑂𝐴. Denote their areas 𝑆𝐴𝑂𝐵, 𝑆𝐵𝑂𝐶 , 

and 𝑆𝐶𝑂𝐴. The trick is to express the desired ratios of the lengths of the 6 

segments, |𝐴𝐵′|: |𝐵′𝐶|, |𝐶𝐴′|: |𝐴′𝐵|, |𝐵𝐶′|: |𝐶′𝐴|, in terms of the ratios of these 

areas. We note that some triangles share altitudes. Therefore,  

|𝐴𝐵′|

|𝐵′𝐶|
=

𝑆𝐴𝐵𝐵′

𝑆𝐵′𝐵𝐶
;  

|𝐴𝐵′|

|𝐵′𝐶|
=

𝑆𝐴𝑂𝐵′

𝑆𝐵′𝑂𝐶
, and so on. 

The above two equalities yield,  

|𝐴𝐵′|

|𝐵′𝐶|
=

𝑆𝐴𝐵𝐵′ − 𝑆𝐴𝑂𝐵′

𝑆𝐵′𝐵𝐶 − 𝑆𝐵′𝑂𝐶
=

𝑆𝐴𝑂𝐵

𝑆𝐵𝑂𝐶
 

Repeating this for the other ratios along the sides of the triangle we obtain,  

|𝐴𝐵′|

|𝐵′𝐶|
∙

|𝐶𝐴′|

|𝐴′𝐵|
∙

|𝐵𝐶′′|

|𝐶′𝐴|
=

𝑆𝐴𝑂𝐵

𝑆𝐵𝑂𝐶
∙

𝑆𝐴𝑂𝐶

𝑆𝐵𝑂𝐴
∙

𝑆𝐵𝑂𝐶

𝑆𝐶𝑂𝐴
= 1, 

which completes the proof.  
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“Inverse” Ceva’s theorem. Geometrical proof. 

Let us formulate the “inverse Ceva’s 

theorem”, the theorem where premise and 

conclusion switch places. 

If in a triangle 𝐴𝐵𝐶 three chevians divide 

sides in such a way that 

|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1  (1) 

holds, then they are concurrent. 𝐴 follows 

from 𝐵, 𝐵
 

⇒ 𝐴, or 𝐴
 

⇐ 𝐵, or, ~𝐴
 

⇒ ~𝐵, in other words if the three cevians of a 

triangle 𝐴𝐵𝐶 are not concurrent, then 
|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
≠ 1. Three cevians 

being concurrent is a necessary condition for the relation  

|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1 to hold.  

Proof. An inverse theorem can often be proven by contradiction (reductio ad 

absurdum), assuming that it does not hold and arriving at a contradiction with 

the already proven direct theorem. Assume that Eq. (1) holds, but one of the 

cevians, say 𝐵𝐵′, does not pass through the intersection point, 𝑂, of the other 

two cevians. Let us then draw another cevian, 𝐵𝐵′′, which passes through 𝑂. 

By direct Ceva theorem we have then, 
|𝐶𝐵′′|

|𝐵′′𝐴|
=

|𝐶′𝐵|

|𝐴𝐶′|


|𝐴′𝐶|

|𝐵𝐴′|
=

|𝐶𝐵′|

|𝐵′𝐴|
, which means 

that 𝐵′ and 𝐵′′coincide, and therefore 𝐴𝐵′, must pass through 𝑂.  

Thus, in the case of Ceva’s theorem premise and conclusion (propositions 𝐴 

and 𝐵) are equivalent, (𝐴
 

⇔ 𝐵), and we can state the theorem as follows 

Theorem (Ceva). Three cevians in a triangle 𝐴𝐵𝐶, 𝐴𝐴′, 𝐶𝐶′, 𝐵𝐵′, are 

concurrent, if and only if 
|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1. 

  



“Inverse” Thales theorem. 

The “inverse” Thales theorem states  

If lengths of segments in the Figure on the 

left satisfy 
|𝐴𝐵′|

|𝐴𝐵|
=

|𝐴𝐶′|

|𝐴𝐶|
, then lines 𝐵𝐶 and 

𝐵𝐶′ are parallel. The proof is similar to the 

proof of Ceva’s “inverse” theorem, by 

assuming the opposite and obtaining a 

contradiction.  

If a theorem establishes the equivalence of two propositions 𝐴 and 𝐵, 𝐴
 

⇔ 𝐵, 

it is actually often the case that the proof of the necessary condition, 𝐴
 

⇐ 𝐵, i. 

e. the “inverse” theorem, is much simpler than the proof of the “direct” 

proposition, establishing the sufficiency, 𝐴 
 

⇒  𝐵. It often could be achieved by 

using the sufficiency condition which has already been proven, and employing 

the method of “proof by contradiction”, or another similar construct.  

Examples of necessary and sufficient statements  

• Predicate 𝐴: “quadrilateral is a square” 

Predicate 𝐵: “all four its sides are equal”  

Which of the following holds: 𝐴 
 

⇒ 𝐵, 𝐴
 

⇐ 𝐵, 𝐴
 

⇔ 𝐵?  

Is 𝐴 necessary or sufficient condition for 𝐵? 

If a quadrilateral is not square its four sides are not equal. Truth or not? 

(𝐴
 

⇐ 𝐵 or ~𝐴
 

⇒ ~𝐵).  

• Predicate 𝐴:  

Predicate 𝐵:  

Which of the following holds: 𝐴 
 

⇒ 𝐵, 𝐴
 

⇐ 𝐵, 𝐴
 

⇔ 𝐵?  
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Homework review: problems on similar triangles.  

Problem 1 (homework problem #3). In the isosceles 

triangle 𝐴𝐵𝐶 point 𝐷 divides the side 𝐴𝐶 into segments 

such that |𝐴𝐷|: |𝐶𝐷| = 1: 2. If CH is the altitude of the 

triangle and point O is the intersection of 𝐶𝐻 and 𝐵𝐷, 

find the ratio |𝑂𝐻| to |𝐶𝐻|.  

Solution. First, let us perform a supplementary 

construction by drawing the segment 𝐷𝐸 parallel to 𝐴𝐵, 

𝐷𝐸||𝐴𝐵, where point 𝐸 belongs to the side 𝐶𝐵, and point 

𝐹 to 𝐷𝐸 and the altitude 𝐶𝐻. Notice the similar triangles, 

𝐴𝑂𝐻~𝐷𝑂𝐹, which implies, 
|𝑂𝐹|

|𝑂𝐻|
=

|𝐷𝐹|

|𝐴𝐻|
. By Thales 

theorem, 
|𝐴𝐻|

|𝐷𝐹|
=

|𝐴𝐶|

|𝐶𝐷|
= 1 +

|𝐴𝐷|

|𝐶𝐷|
=

3

2
, and 

|𝑂𝐹|

|𝑂𝐻|
=

|𝐷𝐹|

|𝐴𝐻|
=

2

3
, so that 

|𝐹𝐻|

|𝑂𝐻|
=

|𝐹𝑂|+|𝑂𝐻|

|𝑂𝐻|
=

5

3
. 

|𝐶𝐻|

|𝑂𝐻|
=

|𝐶𝐻|

|𝐹𝐻|

|𝐹𝐻|

|𝑂𝐻|
= 3 ∙

5

3
= 5, because 

|𝐶𝐻|

|𝐹𝐻|
= 1 +

|𝐶𝐹|

|𝐹𝐻|
= 1 +

|𝐶𝐷|

|𝐷𝐴|
. 

Therefore, the sought ratio is, 
|𝑂𝐻|

|𝐶𝐻|
=

1

5
.  

Problem 2 (homework problem #4). In a trapezoid 

𝐴𝐵𝐶𝐷 with the bases |𝐴𝐵| = 𝑎 and |𝐶𝐷| = 𝑏, segment 

𝑀𝑁parallel to the bases, 𝑀𝑁||𝐴𝐵, connects the opposing 

sides, 𝑀 ∈ [𝐴𝐷] and 𝑁 ∈ [𝐵𝐶]. 𝑀𝑁 also passes through 

the intersection point 𝑂 of the diagonals, 𝐴𝐶 and 𝐵𝐷, as 

shown in the Figure. Prove that |𝑀𝑁| =
2𝑎𝑏

𝑎+𝑏
.  

Solution. By Thales theorem applied to vertical angles 𝐴𝑂𝐵 and 𝐷𝑂𝐶 and 

parallel lines 𝐴𝐵 and 𝐶𝐷, 
|𝐴𝑀|

|𝑀𝐷|
=

|𝐵𝑁|

|𝑁𝐶|
=

|𝐴𝐵|

|𝐷𝐶|
=

𝑎

𝑏
. Consequently, 

|𝐴𝐷|

|𝑀𝐷|
=

|𝐴𝑀|+|𝑀𝐷|

|𝑀𝐷|
=

𝑎

𝑏
+ 1 =

|𝐵𝑁|+|𝑁𝐶|

|𝑁𝐶|
=

|𝐵𝐶|

|𝑁𝐶|
. Now, applying the same Thales theorem to 

angles 𝐴𝐷𝐵 and 𝐴𝐶𝐵 and parallel lines 𝑀𝑁 and 𝐴𝐵, we obtain, 
|𝑀𝑂|

|𝐴𝐵|
=

|𝑀𝐷|

|𝐴𝐷|
=

1
𝑎

𝑏
+1

 and 
|𝑂𝑁|

|𝐴𝐵|
=

|𝑁𝐶|

|𝐵𝐶|
=

1
𝑎

𝑏
+1

. Hence, 
|𝑀𝑂|

|𝐴𝐵|
+

|𝑂𝑁|

|𝐴𝐵|
=

|𝑀𝑁|

|𝐴𝐵|
=

2
𝑎

𝑏
+1

, and |𝑀𝑁| =
2𝑎𝑏

𝑎+𝑏
.  
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