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Algebra.

Recap: Elements of number theory. Euclidean algorithm and greatest common
divisor.

Theorem 1 (division representation).
VYa,b €Z,b>0,3q,r €Z,0<r<b:a=bq+r

Proof. If a is a multiple of b, then 3q € Z,r = 0 : a = bq = bq + r. Otherwise,
ifa>0,then 3g >0€Z:bg<a<b(g+1),andIr=a—-bgeZ:0<r<
b.Ifa<0,then 3g<0€Z:b(q—1)<a<bg,andar=a—-b(q—1)€EZ:
0 < r < b, which completes the proof.

Definition. A number d € Z is a common divisor of two integer numbers a, b €
Z,ifAinm € Z:a = nd,b = md.

A set of all positive common divisors of the two numbers a, b € Z is limited
because these divisors are smaller than the magnitude of the larger of the two
numbers. The greatest of the divisors, d, is called the greatest common divisor
(gcd) and denoted d = (a, b).

Definition. Two integers a, b € Z, are called relatively prime if they have no
common divisor larger than 1,i.e. (a,b) = 1.

Theorem 2. Va,b,q,7 € Z,(a = bq + 1) = ((a,b) = (b, 7))

Proof. Indeed, if d is a common divisor of a,b € Z, then3an,m € Z:a = nd, b =
md =1 =a — bq = (n —mq)d. Therefore, d is also a common divisor of b
and r = a — bq. Conversely, if d' is a common divisor of b and r = a — bq,
thenan',m' € Z:b=m'd,a—bg=n'd >a=n"+m'q)d',sod isa
common divisor of b and a. Hence, the statement of the theorem is valid for
any divisor of a, b, and for gcd in particular.



Corollary 1 (Euclidean algorithm). In order to find the greatest common
divisor d = (a, b), one proceeds iteratively performing successive divisions,

a=bq +r,(a,b)=(br)
b=rq;+1,(1)=(rmr),
r=nq;+1,(r )= (1),
r =T1q3 + 13, (1, 1) = (1, 73), -0,
The1 = Tnln+1, (o1, 1) = (17, 0)

b>r,>r,>r;>-1r,>0=>3d<b,d=1,=(ab)

The last positive remainder, 7;,, in the sequence {r} } is (a, b), the gcd of the
numbers a and b. Indeed, the Eucleadean algorithm ensures that

((l, b) = (b, 7"1) = (rlirZ) == (rn—lrrn) = (rnr O) =Th = d
Examples.

a. (385,105) = (105,70) = (70,35) = (35,0) = 35
b. (513,304) = (304,209) = (209,95) = (95,19) = (19,0) = 19

Continued fraction representation. Using the Euclidean algorithm, one can
develop a continued fraction representation for rational numbers,
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This is accomplished by successive substitution, which gives,
1 r 1
=q1+-=q +Z'T_= Q2 + 75 = Qn+1-
. n

: . . . 385 513 105 304
Exercise. Show the continued fraction representations for —, —, —, —.
105’ 304’ 385’ 513
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Corollary 2 (Diophantine equation). (d = (a,b)) = (3 k,l€Z:d = ka + lb)

Proof. Consider the sequence of remainders in the Euclidean algorithm, r =
a—bq, 1y =b—rq, 1, =T —"qy, 3 =11 —12q3, Ty = Tz — Tn-1qn-
Indeed, the successive substitution gives,r = a — bq,r, = b — (a — bq)q, =
kia+1b,1r, =71 —(kija+1;b)q, = k,a+ L,b,, .15 =15 — (kp_1a +
l,_1b)q, = kpa+ L,b =d = (a,b).

It follows that if d is a common divisor of a and b, then equation ax + by = d,
called the Diophantine equation, has solution for integer x,y € Z.

Exercise. Find the representation d = ka + [b for the pairs (385,105) and
(513,304) considered in the above examples.

Recap: Elements of number theory. Modular arithmetic.

Definition. For a, b, n € Z, the congruence relation, a = b mod n, denotes that,
a — b is amultiple of n, or,3q € Z,a = nq + b.

All integers congruent to a given number r € Z with respect to a division by n € Z
form congruence classes, [r],.. For example, forn = 3,

[0]s = {...,—6,—-3,0,3,6,...}
M]s = {..,-2,1,4,7,...}
2] = {...,-1,2,5,8,...}
3]s = {...,—6,-3,0,3,6,...} = [0];

There are exactly n congruence classes mod n, forming set Z,,. In the above
example n = 3, the set of equivalence classes is Z; = {[0]3, [1]3, [2]3}. For
general n, the setis Z,, = {[0],, [1],,, ..., [n — 1],,}, because [n],, = [0],.

One can define addition and multiplication in Z,, in the usual way,

laln + [b], = [a + D],



[a], - [b], = [a" D],
([a]n)? = [aP],p EN
Here the last relation for power follows from the definition of multiplication.

Exercise. Check that so defined operations do not depend on the choice of
representatives a, b in each equivalence class.

Exercise. Check that so defined operations of addition and multiplication
satisfy all the usual rules: associativity, commutativity, distributivity.

In general, however, it is impossible to define division in the usual way: for
example, [2]¢ - [3]¢ = [6]¢ = [0]¢, but one cannot divide both sides by [3]¢ to
obtain [2]s = [0]¢. In other words, for general n an element [a],, of Z,, could
give [0],, upon multiplication by some of the elements in Z,, and therefore would
not have properties of an algebraic inverse, so there may exist elements in Z,,
which do not have inverse. In practice, this means that if we try to define an
inverse element, [r 1], to an element [r],, employing the usual relation,

[r], * [r "], = [1],, there might be no element [r~1], in class Z,, satisfying this
equation. However, it is possible to define the inverse for some special values
of r and n. The corresponding classes [r],, are called invertible in Z,,.

Definition. The congruence class [r],, € Z,, is called invertible in Z,,, if there exists
aclass [r1], € Z,, such that [r],, - [r"1], = [1],.

Theorem. Congruence class [r],, € Z,, is invertible in Z,,, if and only if r and n are
mutually prime, (r,n) = 1.0r, V[r],,, A[r7], € Z,) © ((r, n) = 1).

To find the inverse of [a] € Z,,, we have to solve the equation, ax + ny = 1, which
can be done using Eucleadean algorithm. Then, ax = 1 mod n, and [a]™! = [x] .

Examples.

3 is invertible mod 10, i. e. in Z; 5, because [3]1¢ - [7]10 = [21]19 = [1]10, but s
not invertible mod 9, i. e. in Zg, because[3]q - [3]o = [0]5 -

7 is invertible in Z;5: [7]15 - [13]15 = [91]15 = [1]15, butis not invertible in Z;,:
[7]14 " [2]14 = [14]14 = [0] 14



