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Geometry.

The method of coordinates.

In introducing coordinates, we set up a correspondence between numbers and points on a
straight line. The following property is satisfied: to each point on the line there corresponds
one and only one number, and to each number there corresponds one and only one point.

A correspondence between two sets  C D ¢
where for each element of the first ; \ / /
set there is one element in the A B A 5

second set, and each element in the

second set corresponds to some A
element of the first set is called a VA
one-to-one correspondence. Can g
there be a one-to-one
correspondence between two line segments of unequal length (see Figure above)?

Which set of points is defined by the following relation (draw P
it on the coordinate plane)? |

{
{

a. x| = |yl =1
b. |x| +x = |y|+y 5 g
c. |xl/x = Iyl/y

i v
d ¥ - y2 <0
e. x2 + y2 > 1 !
£ x + 8x = 9—y2
g bl = [x] 5 g
h. {y} = {x}




The radical axis of two circles.

Recall that for any circle of radius R and any point P distant d from the center, the quantity

d* — R’ is called the power of P with respect to the circle.

Consider the locus of all Y
points whose powers
with respect to two (x.y)
non-concentric circles are
equal. These points form
straight line

perpendicular to the line

of centers of the two

circles. This line is called
the radical axis of two
circles.

The easiest proof is by writing the relation for coordinates (x, y) of such points (Coxeter,
Gretzer, pp. 31-33),

)
(x —a) +yz—r'2=(x—a)2+yz—r2

(av —a)(2x — a — al) =7 —

This defines line x = const, which is perpendicular to the X-axis.

Exercise. Given two points 4 and B, prove that the locus of points M, such that
|MA|2 - |MB|2 = kSMAB, is a pair of straight lines.

The circle of Apollonius.

Problem. Given two points A and B in the plane, find the locus of points M whose distance
from A is k times as great as from B.

Solution. Let us choose a system of coordinates on the plane such that point 4 is at (a, 0),
and point B is at the origin (0,0). Let point M(x, y) satisfy the condition of the problem,



M (x,1

B(0,0)

Now, we have |AM| = k|BM|, or

\/(x — a)2 + y2 = k‘\/x2 + y2

e (x — a)2 + y2 =k’ + kzy2

:)(1 —kz)xz—Zax+(1 —kz)yz+a2 =0

2ax 2 -
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So the sought locus of points is a circle with the center at (—kz), 0) and with the radius,

— ka
(1)
k > 1is similar, but because 1 — k is then negative, its sign should be accounted for when

ka
(k-1)
a line, perpendicular to the segment AB and passing through its center (perpendicular
bisector). The equation (*) above reduces to -2ax + a”*2 =0, i.e.x =a/2.

. Note, that in the above solution we have assumed k < 1. The solution for

taking the square root,so R = . In the special case, k = 1, the answer is obvious: it is

Exercise. Given the triangle ABC with sides |BC| = a, |AC| = b and |AB| = c, find the center
and the radius of the circle circumscribed around this triangle.



Apollonius’ problem (the tangent circles construction).

The Problem of Apollonius is the subject of two lost books, The Tangencies, by Apollonius of
Perga (c. 262-190 BC). Apollonius was a Greek geometer and astronomer noted for his
writings on conic sections. In his surviving work Conics, Apollonius who gave the ellipse,
the parabola, and the hyperbola the names by which we know them. We know of the
Problem of Apollonius though the writing of Pappus of Alexandria (c. 290-350) - a famous
geometer in his own right. Here is a quote from the fragment in [Greek Mathematical
Works, 342-343]:

Given three entities, of which any one may be a point or a straight line or a circle, to draw a
circle which shall pass through each of the given points, so far as it is points which are
given, or to touch each of the given lines.

In this problem, according to the number of like or unlike entities in the hypotheses, there
are bound to be, when the problem is subdivided, ten enunciations. For the number of
different ways in which three entities can be taken out of three unlike sets is ten. The most
difficult and famous case is when the entities are circles.

Problem. Given three arbitrary circles in the plane, find a fourth circle tangent to the first
three.

Solution. Let the centers of the three given circles be (xl, yl), (xz, yz), (x3, y3), and their
radii roT, and Ty respectively. Let the fourth circle tangent tot these three have center

(x, y) and radius r. Then, the tangency conditions can be written as,

(x - xl)2 + (y - yl)z = (rirl)z,
(x - xz)z + (y - yz)z (Tirz)z,

(x - x3)2 + (y - y3)2 = (rir3)2.

Thus we have obtained three quadratic equations for the three unknown variables, (x, y, r).

Because quadratic terms in all three equations are identical, they can be reduced to linear
equations by mutual subtraction and this way easily solved.



