December 14, 2025 Math 8

Handout 13. Euclidean geometry 3: Triangle inequalities.

Broken lines and polygons.

After we have introduced elementary objects, including undefined ones, and axioms and common
notions that describe their properties, we can proceed with building up the Euclidean geometry. We
will do so by introducing more complex objects and formulating and proving theorems which
specify more complex properties of objects and relations among them.

Definition. A set of connected straight segments not all lying on a straight line, such that each two
consecutive segments share an end point, form a broken line. A broken line is convex if it lies on one
side of all the straight lines containing each of its segments. Otherwise, the line is concave. A broken
line whose endpoints coincide is called closed.

Definition. A set of points on the plane bounded by a non-intersecting closed broken line is called
polygon. In other words, a polygon is the figure formed by a non-intersecting broken line and the
part of the plane bounded by it. The straight segments constituting the broken line are called sides
of the polygon and their endpoints are vertices. The angles formed by the adjacent sides sharing a
vertex are called (interior) angles of the polygon. A polygon is convex if it is formed by a convex
closed broken line, otherwise it is concave. The broken line itself is called the boundary of the
polygon, and the total length of its segments the perimeter. Polygons with small number of vertices
have special names. The smallest possible number of vertices is 3, such polygons are called
triangles; polygons with 4 vertices are quadrilaterals, with 5 pentagons, with 6 hexagons, and so on.

Triangles. Isosceles triangles. Equilateral triangle.

The first and one of the most important geometrical figures we consider is a triangle. Any polygon
can be represented as a combination of triangles.

Exercise 1. What is the sum of the angles of a convex quadrilateral? Pentagon? Hexagon? n-gon?

Definition. A triangle is a polygon with three sides (and three vertices, and three angles).
Alternatively, triangle is a set of points on the plane bounded by the three segments connecting
three given points.

Lines in a triangle. In any triangle, there are three special lines from each vertex.



Ina A ABC, the segment (BH) connecting a vertex with the opposite side (base) and perpendicular
to that side is called an altitude (it exists and is unique by Theorem about the existence of the
perpendicular). The segment (BM) connecting a vertex with the midpoint of the opposite side
(base) is called a median. The segment (BF) connecting a vertex with the opposite side (base) and
dividing the angle at the vertex in two equal halves, ZABF = 2£FBC, is called a bisector. For general
triangle, all three lines are different. However, as we will see below, in some triangles they coincide.
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Definition. A triangle is isosceles if two of its sides have equal length. The two sides of equal length
are called legs; the point where the two legs meet is called the apex of the triangle; the other two
angles are called the base angles of the triangle; and the third side is called the base. While an
isosceles triangle is defined to be one with two sides of equal length, the next theorem tells us that
is equivalent to having two angles of equal measure.
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Theorem 10. In an isosceles triangle, the bisector of the angle at the apex (vertex opposite the base)
is at the same time the median and the altitude.

Proof. Consider an isosceles triangle A ABC with a median BM from apex B. We observe that AB =
CB (by definition of isosceles triangle), AM = CM (by definition of midpoint), and side BM is
shared by both triangles. It then follows from the SSS congruence theorem that A ABC =A DEF.
Then, by SAS axiom, m£ABM = m£CBM, so BM is the bisector of the angle ZABC. It also follows
that m£AMB = m«CMB. On the other hand, m£AMB + m«CMB = 180°. It then follows that
msLAMB = m£CMB = 90°, so BM is the altitude. O

Theorem 11 (base angles equal). If A ABC is isosceles with base AC, then mzA = m«C (i.e,,
2BAC = £BCA). Conversely, if A ABC has m£ZA = m«C, then it is isosceles with base AC.

The direct and converse theorem provide the necessary and sufficient conditions for a triangle to be
isosceles, which can be formulated as,

(A ABC is isosceles with base AC) & (ms£A = m«(C)

Proof. Left as a homework exercise. We need to prove both necessary and sufficient condition. O

Definition (axial symmetry). If two points, A and C, are on the opposite sides of aline a = BH which
is perpendicular to AC and are the same distance away from the foot of the perpendicular, H, i.e.
AH = BH, then points 4 and C are called symmetric with respect to the line a.



Two figures (or two parts of a figure) are symmetric with respect to line a if for each point of one
figure (or one part of a figure) there is a symmetric point in the other figure (or the other part of
the figure) and vice versa. The line a is called the axis of symmetry.

Triangle inequalities.

Now we can proceed with proving some important properties of triangles which underlie great
number of practical applications of Euclidean geometry. In this section, we use previous results
about triangles to prove two important inequalities which hold for any triangle.

We already know that if two sides of a triangle are equal, then the angles opposite to these sides are
also equal (this is a property of an isosceles triangle we proved). The next theorem extends this
result: in a triangle, if one angle is bigger than another, the side opposite the bigger angle must also
be longer than the one opposite the smaller angle.

Theorem 12.In A ABC ,if m£A > m«C, then we must have |BC| > |AB|. Conversely, if |BC| > |AB|
then mzA > m«C. Or, using logic notations,

V A ABC,(mzA > mzC) < (|BC| > |AB))

Proof. First, we prove (mzA > m«C) = (|BC| > |AB|), i.e,, if m£A > m«C, then |BC| > |AB| using
proof by contradiction. Assume that (mzA > m«C) A (|BC| < |AB|).If |BC| = |AB|, then A ABC is
isosceles with the base AC and, according to theorem 11, mzA = m«C, which contradicts mzA >
m«C. Assume now |BC| < |AB]|. Find the point D on AB such that |BD| = |BC|, and draw the
segment CD. A BCD is isosceles with the apex B and, therefore, mZBDC = m«BCD. On the other
hand, m£BCD < m«C (this easily follows from Angle Measurement Axiom) and mzA < m«ZBDC
because £BDC is an external angle of A ACD and therefore is larger than any internal angle of that
triangle. We thus obtain, mzA < m£BDC = m£BCD < m«C, which contradicts mzA > m«C.

Exercise 2. (homework). Prove (|[BC| > |AB|) = (m£A > m«(C) O
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This leads us to a proof of one of the most important theorems in Euclidean geometry, which also
has counterparts in linear algebra and vector analysis (Cauchy-Schwarz inequality), and other
branches of mathematics.

Theorem 13 (the triangle inequality). In a triangle, a side is less than the sum of the two other sides,

V A ABC,|AB| < |BC| + |CA]



Proof. Extend the line BC past C to the point D so that |AC| = |CD| and join the points A and D with
a line so as to form the triangle A ABD. Observe that A ACD is isosceles with apex at C; hence
msCAD = m«CDA. It immediately follows that m£BAD = m£BAC + m£CAD > m«4CDA. Then, by
Theorem 12, this implies |BD| > |AB|. Our result now follows from |BD| = |BC| + |CD| (Axiom 2)
and |AC| = |CD| (by construction). O

Homework problems

Note that you may use all results that are presented in the previous sections. This means that you
may use any theorem if you find it a useful logical step in your proof. The only exception is when
you are explicitly asked to prove a given theorem, in which case you must understand how to draw
the result of the theorem from previous theorems and axioms.

1. (Slantlines and perpendiculars) Let P be a point not on line [, and let Q € [ be such that PQ 1 [.
Prove that then, for any other point R on line [, we have PR > PQ, i.e. the perpendicular is the
shortest distance from a point to a line. Note: you cannot use the Pythagorean theorem for this,
as we haven't yet proved it! Instead, use Theorem 12.

2. Review the proof of Theorem about the sum of angles of a triangle and solve Exercise 1 about
the sum of the angles of a convex polygon.

3. (Angle bisector). Define a distance from a point P to line [ as
the length of the perpendicular from P to [ (compare with the
previous problem). Let OM be the angle bisector of ZAOB, i. e.
£LAOM = £LMOB.

a. Let P be any point on OM, and PQ, PR - perpendiculars
from P to sides 04, OB respectively. Use ASA axiom to O
prove that triangles A OPR and A OPQ are congruent
and deduce from this that distances from P to OA, OB are equal.

b. Prove that conversely, if P is a point inside angle ZAOB, and distances from P to the two

sides of the angle are equal, then P must lie on the angle bisector, OM.

These two statements show that the locus of points equidistant from the two sides of an angle is the
angle bisector.

4. Prove that in any triangle, the three angle bisectors intersect at a single point (compare with the
similar fact about perpendicular bisectors).



