HW1 is Due Sept 21

This week we reviewed various types of problems encountered in factorization and simplification of algebraic identities.

Some basic algebraic rules for you to remember:

1. Exponents Laws

If a is a real number, n is a positive integer

$$a^n = a \times a \times \cdots \times a$$

n-times

$$a^{0} = 1$$

$$a^{m} \times a^{n} = a^{m+n}$$

$$a^{m} \div a^{n} = a^{m-n}$$

$$(ab)^{n} = a^{n}b^{n}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$$

$$a^{-n} = \frac{1}{a^{n}}$$

$$(a^m)^n = a^{mn}$$

2. Radicals

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

3. Main Algebraic Identities

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$
$$a^{2} - b^{2} = (a - b)(a + b)$$

Homework problems on next page

Instructions: Please always write solutions on a *separate sheet of paper*. Solutions should include explanations. I want to see more than just an answer: I also want to see how you arrived at this answer, and

some justification why this is indeed the answer. So **please include sufficient explanations**, which should be clearly written so that I can read them and follow your arguments.

1. Simplify

a.
$$\sqrt{\frac{56}{13}} \cdot \sqrt{\frac{26}{7}} =$$

b.
$$\sqrt{48} =$$

c.
$$\frac{\sqrt{48}}{\sqrt{15}} =$$

2. Express the following expressions in the form $2^r 3^s a^m b^n$:

a.
$$8a^3b^2(27a^3)(2^5ab) =$$

b.
$$3^2(2ab)^3(16a^2b^5)(24b^2a) =$$

c.
$$16a^2b^3(6ab^4)(ab^2)^3 =$$

3. Expand as sums of powers of x:

a.
$$(2x + 5)^2 =$$

b.
$$(2-4x)^2 =$$

c.
$$(1-2x)^2 =$$

a.
$$4x^2 + 8xy + 4y^2$$

f.
$$3x^3 - x^2y + 6x^2y - 2xy^2 + 3xy^2 - y^3$$

b.
$$9x^2 - 25$$

g.
$$a^2 - b^2 - 10b - 25$$

c.
$$(x-2)^2 - (y+3)^2$$

h.
$$a^2 + 3a + 2$$

d.
$$256 - a^8b^8$$

i.
$$m^2 - m - 12$$

e.
$$(x-2)^2 - 10(x-$$

$$2) + 25$$

5. Solve the following equations :

a.
$$5(x+1) = 3x + 2$$

d.
$$(x-3)(x+4) = 0$$

b.
$$(x^2 - 1)(x + 2) = 0$$

e.
$$x^2 + 4x = 0$$

c.
$$\frac{x+2}{x+3} = 2$$

f.
$$x^3 - 4x = 0$$

6. Prove:

a.
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

b.
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

c.
$$Find(a+b)^4$$
, $(a-b)^4$ using the previous results