
MATH 7: HANDOUT 7

GEOMETRIC SEQUENCES

Geometric Sequences

Definition

Arithmetic sequences grow by adding the same number each step. Geometric sequences, in contrast, grow
by multiplying by the same number each step.

This simple idea shows up everywhere:

• Population growth and compound interest (exponential growth).

• Radioactive decay (exponential decay).

• Physics of vibrations and waves.

• Computer science (algorithms that double or halve data sizes).

• Music (halftones in the chromatic scale).

A geometric sequence (or geometric progression) is a sequence in which each term is obtained from the
previous one by multiplying by a fixed number, called the common ratio q.
Example: The sequence

6, 12, 24, 48, . . .

is geometric with a1 = 6 and q = 2.

General Term

The n-th term of a geometric sequence is
an = a1q

n−1.

Example: If a1 = 6 and q = 2, then

a10 = 6 · 29 = 6 · 512 = 3072.

Behavior of the Terms of the Geometric Sequence

If we graph the terms of a geometric sequence, the points no longer lie on a straight line as they did in case
of arithmetic sequence — they form a curve that reflects how the values grow or shrink depending on q.

Case 1: q > 1 (Exponential Growth)

When q > 1, each term is larger than the previous one. The sequence grows rapidly — this is called
exponential growth.
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Case 2: 0 < q < 1 (Exponential Decay)

When q is between 0 and 1, each term is smaller than the previous one. The sequence decreases but always
stays positive — this is called exponential decay.
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Case 3: −1 < q < 0 (Alternating Decay)

When q is negative but greater than −1, the terms alternate in sign (positive, negative, positive, . . . ), while
their absolute values get smaller and smaller. The graph “bounces” above and below the axis, approaching
zero.
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Case 4: q < −1 (Alternating Growth)

When q is less than −1, the terms alternate in sign and grow in absolute value. The graph still “bounces,”
but now the values get larger and larger.
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Behavior of Geometric Sequences

• If q > 1, the sequence shows exponential growth — terms increase rapidly.

• If 0 < q < 1, the sequence shows exponential decay — terms decrease toward 0.

• If −1 < q < 0, terms alternate in sign and their magnitudes shrink toward 0.

• If q < −1, terms alternate in sign and grow in magnitude.

Geometric Mean Property

In a geometric sequence, each term is the geometric mean of its neighbors:

an =
√
an−1 · an+1.

Proof: Since an = an−1q and an+1 = anq, multiplying gives

an−1 · an+1 = (an/q) · (anq) = a2n.

■

Sum of n Terms

Sn = a1 + a2 + a3 + · · ·+ an =
a1(1− qn)

1− q

Proof: To prove this, we write the sum and multiply it by q:

Sn = a1 + a2 + · · ·+ an

qSn = qa1 + qa2 + · · ·+ qan

Now notice that qa1 = a2, . . . qa2 = a3, . . . , qan = an+1, etc, so we have:

Sn = a1 + a2 + · · ·+ an

qSn = a2 + a3 + · · ·+ an+1

Subtracting the second equality from the first, and canceling out the terms, we get:

Sn − qSn = (a1 − an+1), or

Sn(1− q) = (a1 − a1q
n)

Sn(1− q) = a1(1− qn)

from which we get the formula above. ■
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Example Find 1 + 2 + 4 + 8 + · · ·+ 210. Here a1 = 1, q = 2, n = 11.

S11 =
1(1− 211)

1− 2
= 211 − 1 = 2047.

Sum and Product Notation

Mathematicians use special symbols to write long sums or products compactly.

1. Sum notation (Sigma notation).

n∑
k=1

ak = a1 + a2 + a3 + · · ·+ an

The Greek letter Σ (sigma) means “sum of.” For example,

5∑
k=1

2k = 21 + 22 + 23 + 24 + 25

= 2 + 4 + 8 + 16 + 32 = 62.

2. Product notation (Pi notation).

n∏
k=1

ak = a1 · a2 · a3 · · · · · an

The Greek letter Π (pi) means “product of.” For example,

4∏
k=1

k = 1 · 2 · 3 · 4 = 4! = 24.

3. Application to geometric sequences.
A geometric sum can be written neatly using Σ:

Sn =

n∑
k=1

a1q
k−1.

The k-th term is ak = a1q
k−1, and the sum automatically includes all terms from a1 to an.

These notations make formulas shorter and easier to read, especially for large n.

Infinite Sum

If 0 < q < 1, then as n → ∞, the terms a1qn get smaller and smaller, approaching 0. So the sum approaches
a limit:

S =
a1

1− q
.

Proof The sum of the first n terms is

Sn = a1 + a1q + a1q
2 + · · ·+ a1q

n−1 = a1
1− qn

1− q
.

When |q| < 1, powers of q become very small: qn → 0.
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Therefore, as n → ∞,

Sn = a1
1− qn

1− q
→ a1

1− 0

1− q
=

a1
1− q

.

■
Example:

1 +
1

2
+

1

4
+

1

8
+ · · · = 1

1− 1
2

= 2.

This idea underlies many real-world models:

• A bouncing ball loses half its height each bounce.

• A discount factor in finance.

• An infinite repeating decimal, e.g. 0.9 = 1.

Let us look at this example in a bit more details. Why do we assume that 0.999 . . . = 1? Indeed,

0.9999 . . . =
9

10
+

9

100
+

9

1000
+ · · ·

=
9

10
+

9

10
·
(

1

10

)
+

9

10
·
(

1

10

)2

+ · · · .

We can observe that this is a sum of geometric sequence with a1 = 9
10 and q = 1

10 . Using the formula
for infinite geometric sequence, we get:

0.999 . . . =
a1

1− q
=

9
10

1− 1
10

=
9
10
9
10

= 1.

Depreciation of Cars/Phones

Some items lose the same % of value each year:

Vn = V1 · (1− p)n−1,

e.g., a phone losing 20% yearly: Vn = V1 · 0.8n−1.

Population Growth/Decay

If a population changes by a fixed % per step:

Pn = P1 · (1 + r)n−1 (r > 0 growth, r < 0 decay).

Example: bacteria doubling each hour: Pn = P1 · 2n−1.

Bouncing Ball Heights

A ball rebounds to a fixed fraction q of its previous height:

hn = h1 · q n−1.

If q = 3
5 , heights go h1,

3
5h1,

(
3
5

)2
h1, . . .. Total vertical distance uses a geometric sum.
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Compound Interest & Savings Growth

Money that earns a fixed percentage each period grows by a geometric sequence:

an = a1 · (1 + r)n−1.

Example: $1000 at r = 5% per year becomes 1000, 1050, 1102.5, · · · = 1000 · 1.05n−1.
Setup. You deposit the same amount d at the end of each period (month, year, etc.). The account
pays a fixed interest rate r per period. After n deposits, how much money is in the account?

Idea. Each deposit grows for a different number of periods. Let q = 1 + r. The last deposit grows for
0 periods, the one before grows for 1 period, etc.

Sn = d
(
q n−1 + q n−2 + · · ·+ q1 + q0

)
= d · q

n − 1

q − 1
.

Future value (end-of-period deposits):

Sn = d · (1 + r)n − 1

r
(also called an annuity-immediate).

If deposits are at the beginning of each period (each payment earns one extra period of interest),
multiply by q:

S(begin)
n = (1 + r) d · (1 + r)n − 1

r
(annuity-due).

Example (end-of-month deposits). Deposit d = $200 each month at r = 0.5% (= 0.005) per month
for n = 12 months:

S12 = 200 · (1.005)
12 − 1

0.005
≈ 200 · 12.34 ≈ $2,468.

Without interest, you’d have $2,400; interest adds about $68.

Medicine in the Body

If the body removes a fixed % of medicine each hour, the amount left after each hour forms

Mn = M1 · (1− p)n−1.

This describes exponential decay: the medicine concentration decreases by the same fraction every
hour rather than by a fixed amount.

Example. If 20% of a drug is eliminated each hour (p = 0.20), then after 3 hours only

(1− 0.20)3 = 0.83 = 0.512

or about 51% of the original dose remains.

When a new dose is taken before the previous one is (almost) fully gone, the remaining amounts
add up, forming a geometric series. This is why doctors set dosing intervals carefully—to keep
the concentration within a safe and effective range (the therapeutic window) without the medicine
building up to toxic levels.
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Radioactive Half-Life and Carbon Dating

A substance that halves every k units of time follows

An = A0 ·
(

1
2

)n

.

Each “half-life” step multiplies by q = 1
2 .

Carbon Dating. Carbon-14 is a radioactive isotope of carbon that is constantly produced in the upper
atmosphere by cosmic rays. Living things absorb carbon—both the stable 12C and the radioactive
14C—through breathing and eating. As long as an organism is alive, the ratio of 14C to 12C in its body
stays nearly the same as in the atmosphere.

When the organism dies, it stops exchanging carbon with the environment. From that moment, the
14C inside begins to decay while 12C remains stable. By measuring how much 14C is left in a fossil and
comparing it to the known ratio in modern living organisms, scientists can determine what fraction
of carbon-14 remains—and thus how long it has been decaying.

Carbon-14 has a half-life of about 5730 years. If a fossil contains only 25% of the original carbon-14,
that means two half-lives have passed: (

1
2

)2

= 1
4 ,

so the fossil is roughly 2× 5730 = 11,460 years old.

Tournaments and Brackets

In single-elimination play, the number of teams each round follows

N, N
2 ,

N
4 , . . .

– a geometric sequence with q = 1
2 .

Fractals (e.g., Koch Snowflake)

Koch Snowflake construction

At each stage, the number and length
of segments change by fixed factors,
so the perimeter terms follow a ge-
ometric progression, while the total
area approaches a finite limit that can
be found by summing a geometric se-
ries.

Fractals like the Koch Snowflake show
how geometric sequences appear in
nature and art— finite area, yet infi-
nite perimeter!

Common Mistakes

• Confusing an = a1q
n with the correct an = a1q

n−1.

• Forgetting the sum formula only works for q ̸= 1.

• Using the infinite sum formula when |q| ≥ 1 (it only converges if |q| < 1).
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Sample Problems

1. Geometric or not? Find q and the next three terms (if geometric).

(a) 3, 6, 12, 24, . . .

(b) −5, 10, −20, 40, . . .

(c) 2, 5, 12.5, 31.25, . . .

(d) 7, 7, 7, 7, . . .

(e) 4, 8, 13, 21, . . .

2. General term and specific values.

(a) a1 = 9, q = 1
3 . Find an and a7.

(b) a4 = 48, q = 2. Find a1 and a8.

(c) a1 = −3, a5 = 48. Find q and a10.

3. Geometric mean property. In a geometric sequence (an), a3 = 12 and a5 = 48.

(a) Find a4 using a4 =
√
a3a5.

(b) Find the common ratio q and a1.

4. Finite sums.

(a) Compute S = 5 + 10 + 20 + 40 + · · ·+ 5 · 29.

(b) Compute T = 1− 4 + 42 − 43 + · · ·+ (−4)10.

(c) Compute U =
1

2
+

1

22
+

1

23
+ · · ·+ 1

212
.

5. Infinite geometric series. For each series, state whether it converges. If it converges, find the sum.

(a) 1 +
1

4
+

1

42
+

1

43
+ . . .

(b) 3− 3

5
+

3

52
− 3

53
+ . . .

6. Savings with monthly deposits (compound interest). You deposit d = $150 at the end of each month
into an account earning 0.6% per month.

(a) Find the amount after n = 12 months.

(b) How much is in the account after n = 60 months (5 years)?

(c) If you instead deposit at the beginning of each month, how do your answers change?

(d) Compare your results with the situation when there is no interest at all. How much of the total
balance is due to your deposits and how much comes from interest?

7. Bouncing ball total distance. A ball is dropped from height H meters. Each bounce reaches 3
5 of the

previous height.

(a) Write the sequence of rebound heights.

(b) Find the total vertical distance traveled by the ball until it stops bouncing (assume infinitely many
bounces).

(c) If H = 2 meters, compute the total distance numerically.
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Sample Problems: Solutions

1. Geometric or not? Find q and the next three terms (if geometric).

(a) 3, 6, 12, 24, . . . is geometric with q = 2. Next: 48, 96, 192.

(b) −5, 10,−20, 40, . . . is geometric with q = −2. Next: −80, 160,−320.

(c) 2, 5, 12.5, 31.25, . . . is geometric with q = 5
2 . Next: 78.125, 195.3125, 488.28125.

(d) 7, 7, 7, 7, . . . is geometric with q = 1. Next: 7, 7, 7.

(e) 4, 8, 13, 21, . . . is not geometric (ratios are not constant).

2. General term and specific values.

(a) a1 = 9, q = 1
3 . Then an = 9

(
1
3

)n−1
and

a7 = 9
(
1
3

)6
=

9

729
=

1

81
.

(b) a4 = 48, q = 2. Since a4 = a1q
3, we get a1 = 48

23 = 6. Then

a8 = a1q
7 = 6 · 27 = 6 · 128 = 768.

(c) a1 = −3, a5 = 48. Here a5 = a1q
4 ⇒ q4 = 48

−3 = −16, which has no real solution. Conclusion: no
real geometric sequence fits these data.

3. Geometric mean property. Given a3 = 12, a5 = 48.

(a) Since a2n = an−1an+1, we have a24 = 12 · 48 = 576, so a4 = ±24.

(b) Also a5 = a3q
2 ⇒ q2 = 48

12 = 4, so q = 2 or q = −2. Then

a1 =
a3
q2

=
12

4
= 3.

If q = 2 then a4 = 12 · 2 = 24; if q = −2 then a4 = 12 · (−2) = −24.

4. Finite sums.

(a) S = 5 + 10 + 20 + · · ·+ 5 · 29 has a1 = 5, q = 2, n = 10:

S = 5 · 2
10 − 1

2− 1
= 5(1024− 1) = 5 · 1023 = 5115.

(b) T = 1− 4 + 42 − 43 + · · ·+ (−4)10 =

10∑
k=0

(−4)k:

T =
1− (−4)11

1− (−4)
=

1− (−4194304)

5
=

4194305

5
= 838861.

(c) U =
1

2
+

1

22
+ · · ·+ 1

212
has a1 = 1

2 , q = 1
2 , n = 12:

U =
1
2

(
1− ( 12 )

12
)

1− 1
2

= 1− 1

4096
=

4095

4096
.

5. Infinite geometric series. Converges iff |q| < 1; sum =
a1

1− q
.
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(a) 1 +
1

4
+

1

42
+ . . . : a1 = 1, q = 1

4 . Converges to
1

1− 1
4

=
4

3
.

(b) 3− 3

5
+

3

52
− . . . : a1 = 3, q = − 1

5 . Converges to
3

1− (− 1
5 )

=
3
6
5

=
5

2
.

6. Savings with monthly deposits (compound interest). With end-of-month deposits,

Sn = d · (1 + r)n − 1

r
, d = 150, r = 0.006.

(a) n = 12:

S12 = 150 · (1.006)
12 − 1

0.006
≈ 150 · 12.4040 ≈ $1,860.60 .

(b) n = 60:

S60 = 150 · (1.006)
60 − 1

0.006
≈ $10,794.71 .

(c) Beginning-of-month deposits (annuity-due) multiply by (1 + r):

S
(begin)
12 ≈ 1.006 · 1860.60 ≈ $1,871.77 , S

(begin)
60 ≈ 1.006 · 10794.71 ≈ $10,859.48 .

(d) Without interest, the total after n months is simply

Sno interest = d · n.

• For n = 12:
Sno interest = 150× 12 = 1800.

With interest, you had about $1860.60, so the interest earned is roughly

1860.60− 1800 = $60.60 .

• For n = 60:
Sno interest = 150× 60 = 9000.

With interest, you had about $10,794.71, so the total interest earned is

10,794.71− 9000 = $1,794.71 .

7. Bouncing ball total distance. Rebound heights:

H, 3
5H,

(
3
5

)2
H, . . .

Total vertical distance

D = H + 2

∞∑
k=1

H
(
3
5

)k
= H + 2H ·

3
5

1− 3
5

= H ·
1 + 3

5

1− 3
5

= H ·
8
5
2
5

= 4H.

For H = 2m, D = 4 · 2 = 8 m .
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Homework

1. Write the first five terms of a geometric sequence if a1 = −20 and q = 1
2 .

2. Determine the first two terms of the sequence

a1, a2, 24, 36, 54, . . .

3. Find the common ratio of the geometric sequence

1

2
, −1

2
,
1

2
, . . .

and compute a10.

4. A geometric sequence has 99 terms. If a1 = 12 and a99 = 48, find the 50th term.

5. Calculate:
1

3
+

1

32
+

1

33
+

1

34
+ · · ·+ 1

310
.

6. Calculate:
1− 2 + 22 − 23 + 24 − 25 + · · · − 215.

7. Calculate:
1− 3 + 32 − 33 + 34 − 35 + · · ·+ 320

8. Calculate:
1 + x+ x2 + x3 + · · ·+ x100.

9. A chessboard has 64 squares. If we place one grain of wheat on the first square, two on the second, four
on the third, etc., approximately how many grains of wheat will there be in total? Hint: use 210 ≈ 103.

Estimate the total volume of this wheat and compare with the annual U.S. wheat harvest (about 2
billion bushels). Data: one grain ≈ 40 mm3, one bushel ≈ 0.035 m3.

10. Calculate an infinite sum:
1

3
+

1

32
+

1

33
+

1

34
+ . . . .

11. Calculate an infinite sum:
1− 1

2
+

1

22
− 1

23
+

1

24
− . . . .

12. Music and Frequency. The connection between mathematics and music has been known since ancient
times. The Greek philosopher Pythagoras (6th century BC) studied vibrating strings and discovered
that musical harmony is based on numerical ratios. For example, halving the length of a string doubles
the frequency, producing a higher note called an octave. Multiplying the frequency by 3

2 gives the
perfect fifth, another harmonious interval.

Later, musicians developed a system of equal temperament, in which the octave is divided evenly into
12 equal parts called semitones. In this system, moving up by one semitone always multiplies the
frequency by the same ratio q. After 12 semitones, the frequency doubles:

a13 = a1 · q12 = 2a1.

Today, this is the basis of Western music: the chromatic scale.

If the note A has frequency 440 Hz, then the sequence of notes is

. . . , A, A♯, B, C, C♯, D, D♯, E, F, F ♯, G, G♯, A, . . .
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(a) Find the value of the common ratio q.

(b) Compute the frequencies of the notes C and E above A.

(c) Using the calculator, find the ratio of frequencies of A and E (such an interval is called a fifth).
Compare the frequency ratio with 3

2 from Pythagoras’ system. What do you notice?

Non-Western Traditions

Not all musical traditions use the 12-tone equal-tempered system. Many non-Western systems
divide the octave differently or use continuous pitch changes rather than fixed steps. For exam-
ple:

• Indian classical music uses a system of 22 microtones called shrutis.

• Arabic and Turkish music employ 24 quarter-tones per octave, allowing smaller melodic
intervals.

• Traditional Chinese music often uses a pentatonic (five-note) scale based on pure fre-
quency ratios derived from simple fractions like 3:2.

• Indonesian gamelan tuning systems, such as sléndro (five tones) and pélog (seven tones),
divide the octave into unequal steps unique to each ensemble.

Thus, while equal temperament is the foundation of modern Western instruments (like the
piano), many world musical traditions use their own tunings that better suit the expressive and
cultural character of their music.
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