MATH 7: HANDOUT 3

ALGEBRAIC EXPRESSIONS AND IDENTITIES I

Main Algebraic Identities

In algebra, certain patterns come up so often that we call them **algebraic identities**. They allow us to expand and simplify expressions quickly without multiplying everything out.

$$(a+b)^2 = a^2 + 2ab + b^2 (1)$$

$$(a-b)^2 = a^2 - 2ab + b^2 (2)$$

$$a^{2} - b^{2} = (a - b)(a + b)$$
(3)

These are called the **square of a sum**, **square of a difference**, and the **difference of squares**. **Examples:**

- $(x+5)^2 = x^2 + 10x + 25$
- $\bullet (2y-3)^2 = 4y^2 12y + 9$
- $49 y^2 = (7 y)(7 + y)$

Factoring Techniques

Factoring means rewriting an expression as a product of simpler factors. This is the reverse process of expanding. The main strategies are:

- Taking out common factors. Example: $6x^2 + 9x = 3x(2x + 3)$.
- Using identities. Example: $x^2 25 = (x 5)(x + 5)$ is the difference of squares.
- **Grouping.** Sometimes terms can be paired to reveal a common factor: ax + ay + bx + by = (ax + ay) + (bx + by) = a(x + y) + b(x + y) = (a + b)(x + y).

In addition to there simple methods, algebraic identities can used to factor expressions that do not seem to fit the general pattern of these identities:

Example 1: Factoring $x^4 + y^4$

$$x^4 + y^4 = x^4 + 2x^2y^2 + y^4 - 2x^2y^2$$
 and and subtract $2x^2y^2$ apply (1) to the first three terms
$$= (x^2 + y^2)^2 - (\sqrt{2}xy)^2$$
 apply (3)

Example 2: Factoring $x^2 - 4x + 3$

$$x^2 - 4x + 3 = x^2 - 4x + 4 - 1$$
 add and subtract 1
= $(x - 2)^2 - 1$ apply (2) to the first three terms
= $(x - 2 - 1)(x - 2 + 1)$ apply (3)
= $(x - 3)(x - 1)$.

1

Solving Equations

Equations can often be solved by rewriting them in factored form. If a product of factors equals zero, then at least one of the factors must be zero (this is the **zero-product property**).

Example: (x-2)(x+5) = 0 means either x-2 = 0 or x+5 = 0. Thus x = 2 or x = -5.

More complicated equations can be simplified by:

- Moving all terms to one side to get a polynomial equal to zero.
- Factoring using the techniques above.
- Applying the zero-product property.

Example: $x^2 + 4x = 0 \implies x(x+4) = 0 \implies x = 0 \text{ or } x = -4.$

Homework

- 1. Simplify:
 - (a) $\frac{\sqrt{63}}{\sqrt{7}}$
 - (b) $\sqrt{200}$
 - (c) $\sqrt{12} \cdot \sqrt{27}$
- 2. Express in the form $2^r 3^s a^m b^n$:
 - (a) $12a^2b^3 \cdot (18a^4) \cdot (24ab)$
 - (b) $8(3ab)^2(9a^3b^2)(12ab^4)$
 - (c) $4a^3b^2 \cdot (6ab^5) \cdot (ab^2)^2$
- 3. Expand as sums of powers of x:
 - (a) $(3x+4)^2$
 - (b) $(1-5x)^2$
 - (c) $(2-3x)^2$
- 4. Factor:
 - (a) $a^2 + 6a + 9$
 - (b) $x^2 9$
 - (c) $4x^2 12xy + 9y^2$
 - (d) $(x+4)^2 (y-1)^2$
 - (e) $a^2 b^2 10b 25$
- 5. Solve:
 - (a) 4(x+2) = 3x + 10
 - (b) (x-1)(x+3) = 0
 - (c) $\frac{x+4}{x+2} = 3$

- (d) $(1-x)^2(3-x)$
- (e) $(x+2)^2(2x-3)$
- (f) $a^4 16$
- (g) $x^4 y^4$
- (h) $2x^3 + 6x^2 8x 24$
- (i) $3x^3 x^2y + 6x^2y 2xy^2 + 3xy^2 y^3$
- (j) $a^4 + 4$ [Hint: add and subtract $4x^2$]
- (d) (x-5)(x+6) = 0
- (e) $x^2 5x = 0$
- (f) $x^3 2x = 0$
- 6. A $4 \times 4 \times 4$ cubical box has 64 small cubes inside. How many of these touch a side or the bottom of the box?
- 7. Sarah's average on 7 math quizzes is 92. What score must she earn on the 8th quiz to raise her average to 93?