
Ancient Mathematics: Pythagoras

"The so-called Pythagoreans applied themselves to mathematics, and were the first to develop

this science; and through studying it they came to believe that its principles are the principles of

everything." – Aristotle’s Metaphysics, Book 1, 985b

Mathematics in Ancient Greece was set apart from its predecessors in Egypt
and Babylon by emphasis on generalization, and its foundation on axioms and
rigorous proof. The age of the Pythagoreans is thus of particular importance
to the history and development of modern mathematics, see [1].

Pythagoras himself, although thought of as a mathematician today, was at
the time regarded in a different light. Herodotus called him an "important
sophist", a paid teacher of philosophy, rhetoric and science in ancient Greece.
Others thought of him as the founder of a religious order based on the principle
that "All is number."1

The Pythagoreans studied laws of whole numbers. Indeed, in common with
other ancient cultures, the only numbers in Greek mathematics were positive in-
tegers. The Pythagoreans pictured integers as constellations – groups of points
arranged in some geometrical pattern. They wished to express geometrical
shapes as numbers, in service of their belief that all matter could be formed
from basic shapes.

We study first triangular numbers

Notice the pattern: the rows of the triangle contain 1, 2, 3, 4, etc points.
The next row always increases by one point. Thus, the nth triangle (where n

1They were vegetarians, believed in the transmigration of souls, and accepted women as students. As
part of this religion, apparently, Pythagoras prohibited the consumption of fava beans.
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is a whole number) has

Tn := 1 + 2 + 3 + · · ·+ n

points. Recall how to find this sum:

Tn + Tn = 1 + 2 + 3 + · · ·+ n

+ n+ (n− 1) + (n− 2) + · · ·+ 1 = n(n+ 1).

Thus Tn = 1
2n(n+ 1) gives a formula for the nth triangular number. The first

few are T1 = 1, T2 = 3, T3 = 6, T4 = 10, T5 = 15, T6 = 21, T7 = 28, etc.

Even more remarkable are the numbers from a square array. Here, if the nth
square has n points on its side, the next square has n+ 1 points which means
an addition of n+ n+ 1 = 2n+ 1 points total. So

Sn = 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

Since to get Sn+1, we add 2n+1 points, we obtain the the remarkable conclusion:
differences between successive squares give the sequence of odd numbers:

(n+ 1)2 − n2 = 2n+ 1. (1)

With the aid of the formula (1) , we can discover sets of numbers that satisfy
the Pythagorean equation:

a2 + b2 = c2. (2)

To do so, we must make 2n+1 into a square, say m2. In this case, n = 1
2(m

2−1)
and n+ 1 = 1

2(m
2 + 1).2 Thus (1) becomes

m2 +

(
m2 − 1

2

)2

=

(
m2 + 1

2

)2

.
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m a b c

3 3 4 5
5 5 12 13
7 7 24 25
9 9 40 41

Now, m must be odd since m2 is odd. Thus, plugging in m = 3, 5, 7, 9 we find
So far we have discovered that successive positive integers leads to triangu-

lar numbers, and successive odd integers leads to squares. What about if we
add successive even integers?. This can be seen by considering a rectangular
configuration of sides n and n + 1 dots. This next rectangle has n + n = 2n

more dots than the previous.

Rn = 2+ 4+ 6+ 8+ · · ·+ 2n = 2(1 + 2 + 3+ 4+ · · ·+ n) = n(n+ 1) = 2Tn.

Thus, the rectangle can be divided into two triangles, along the "diagonal" (not
so with the square). So, adding odd numbers leads to a square array whereas
adding even numbers leads to a rectangular array in which the ratio (n+ 1)/n
of the sides depends on n (unlike the square). Thus, the Pythagoreans deduced
the following correspondence:

odd ⇐⇒ limited even ⇐⇒ unlimited

Today, we would not draw such conclusions.
Finally, we study pentagonal numbers. Here, there are n+n+n−2 = 3n−2

additional points added each step

Pn = 1 + 4 + 7 + 10 + · · ·+ (1 + 3(n− 1)) =
1

2
n(3n− 1).

2Note that m2 is odd, so the fractions defining n and n+ 1 are integers
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Note that the nth pentagonal number is one third of the (3n− 1)th triangular
number. Moreover, there are the interesting identities:

Pn = Tn−1 + Sn = T2n−1 − Tn.

The discoveryof the relation between musical harmony and the theory of
proportion, attributed to Pythagoras; reinforced this view of the structure of
the universe:

• Identical strings whose lengths are in the ratio 2:1 vibrate an octave apart.

• A perfect fifth corresponds to the ratio 3:2.

• A perfect fourth corresponds to the ratio 4:3.

The physical line segments and triangles of Pythagorean geometry could simi-
larly be considered to be made up of discrete numerical elements.

Let us now discuss this issue of commensurability and incommensurability
The Pythagorean commensurability supposition stems from their basic tenets:

all is number and that the design of the gods be perfect (whole).
This picture was destroyed when it was discovered that the diagonal of the

square was incommensurable with the side. In this case, if the side be con-
structed of a finite number of discrete elements, how can the hypotenuse be
constructed?

The discovery of incommensurable ratios produced a crisis; apparently a
disciple named Hippasus (c. 500 BC) was set adrift at sea as punishment
for its revelation. However, by 340 BC, the Greeks were happy to admit the
existence of incommensurable lengths.
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Theorem (Aristotle): If the diagonal and the side of the square are com-
mensurable, then odd numbers equal even numbers.

Indeed, we have the famous Pythagorean theorem

Theorem (Pythagoreans): If a, b and c represent the side lengths of a right
triangle, c being the hypotenuse, then a2 + b2 = c2.

Supposing a = b = 1, follows that
√
2 is an irrational number.

Note: this argument very possiblty that of the Pythagoreans. However, since
the only numbers were integers, the symbols a, b, c, d are integer multiples of an
assumed common sub-length for the Pythagoreans. This restriction destroys the
generality of the argument. Book I of Euclid’s Elements had the primary goal
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to provide a rigorous proof of Pythagoras’ Theorem which did not depend on
commensurability. Note that, with our modern understanding of real numbers,
there is nothing wrong with the above argument.
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