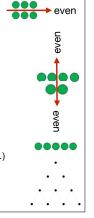
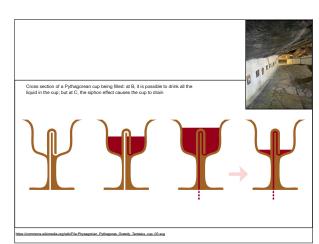
Numbers and Counting

Pythagoras(~600BC?)
The Pythagoreans

Who was Pythagoras?


Pythagoras (~600BC?) - The Pythagoreans


- · We know almost nothing about Pythagoras.
- Some scholars even doubt he existed. Most believed he as a Holy Man.
- The Pythagoreans form a very secretive sect.
- The mathematical and the mystical were merged.

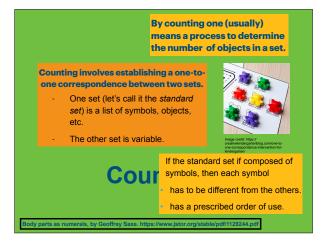
The Pythagoreans

- · Recall Dichotomy between odd and even.
- Pythagoreans probably represented numbers with pebbles.
 - Example: A number is even if it can be represented by a configuration of pebbles that than be divided into two equal parts.
 Otherwise is odd. (Well, 1 was not considered odd. nor even)
 - · Proof: 4+2 is even.
 - Proof: An even sum of odd numbers is even. (Similar to the proof of 4+2 is even.)

What is mathematics?

What is mathematics?

What do you mean by mathematics?


Fundamental type of question

What is counting?

What is counting?

What do you mean by counting?

What is counting?
Explain it to
someone who does
not know what it is

Counting and the brain

Counting and the human brain

Humans have innate number sense

Small number words come from body parts

Brain connects finger control with number processing

Flypothesis | Symptonary link | between fingers and counting |

Number sense is a short-hand for our ability to quickly understand, approximate, and manipulate numbered quartities

Science Databaseal SOB.

Approximate number system - Object tracking system

Two separate mental systems to represent number without symbols in humans an many animals

Approximate number system:

programmes/poud43mk

- approximate
- non-verbal
- Represents and compares numerosities
- ratio is key.

Example: Experiment where a monkey selects between two groups of dots displayed on a screen, choosing the group with the smaller quantity.

Two separate mental systems to represent number without symbols in humans an many animals

Object tracking system:allows grasping only small set sizes, from one to about four, in an unconscious but relatively precise way.

Note: Grasping (not counting!) up to four.

Two separate mental systems to represent number without symbols in humans an many animals

Object tracking system:allows grasping only small set sizes, from one to about four, in an unconscious but relatively precise way.

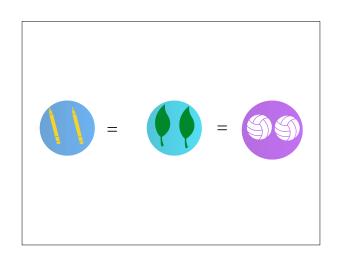
Note: Grasping (not counting!) up to four.

Two separate mental systems to represent number without symbols in humans an many animals

Approximate number system:

- approximate
- non-verbal
- Represents and compares numerosities
- ratio is key.

Object tracking system:allows grasping only small set sizes, from one to about four, in an unconscious but relatively precise way.

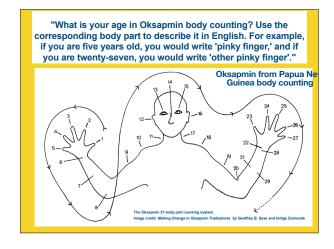

Note: Grasping (not counting!) up to four.

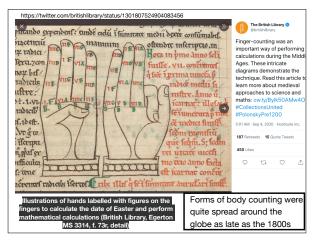
- Around 1900 Von Osten claimed his horse, Clever Hans could do arithmetic.
- Von Osten would show Clever Hans written problems or ask questions aloud
- The horse would tap out the answer with its hoof.

Animals do have counting abilities but sometimes these are exaggerated

Examples of counting in different societies

Can counting happen without words for numbers? If so, how? If not, why?




Begins with the thumb on one hand Enumerates 27 places around the body, Ends on the little finger of the opposite hand. To indicate a particular number, one points to the appropriate body part and says the body part name. Example: to indicate the number 12, one points to the ear which is the 12th body part and says the word for ear, "nata". This way of counting is called body counting Forms of body counting

were quite spread around

the globe as late as the

1800s

History of mathematics hidden in language

How can we explore the origins of numbers?

Some approaches:

- · Comparing past and present number systems
- · Analyzing notations in ancient number systems
- Investigating the origins and evolution of number words

From Two to Three: A Giant Leap

Three means "many" in many languages:

- English: "three" and "through"
- French: "trois" and "très" (very)
- · Latin: "trans" (beyond) suggests surpassing a limit

Evidence in ordinal numbers:

- "First" = before all others
- "Second" = "the other" (Latin: following)
- "Third, fourth, fifth..." = systematic counting

The struggle: Moving from "few" to "many"

Early word numbers: Observe patterns

Num ber	English	Gothic	Latin	Ancient Greek	Welsh	Sanskrit	Basque
1	one	ains	unus	heis	un	eka	bat
2	two	twai	duo	dyo	dau	dva	biga
3	three	threis	tres	treis	tri	tri	hirur
4	four	fidwor	quattuor	tettares	pedwar	catur	laur
5	five	fimf	quinque	pente	pump	panca	bortz
6	six	saihs	sex	hex	chwech	sad	sei
7	seven	sibun	septem	hepta	saith	sapta	zazpi
8	eight	ahtau	octo	okto	wyth	asta	zortzi
9	nine	niun	novem	ennea	naw	nava	bederatzi
10	ten	taihun	decem	deka	deg	dasa	hamar

A counting system is quite a complex construction, with different historical structures overlaying one another

Describe all patterns you can find in this table

Describe all patterns you can find in this table

Num ber	English	Gothic	Latin	Ancient Greek	Welsh	Sanskrit	Basque
11	eleven	ainlif	undecim	hendeka	un ar ddeg	ekaadasha	hamaika
12	twelve	twalif	duodecim	dodeka	deudddeg	dvaadashan	hamabi
13	thirteen	þritehund	tredecim	treiskaideka	tri ar ddeg	trayodasha	hamahiru
14	fourteen	fidwartehund	quattuordecim	tessareskaideka	pedwar ar ddeg	chaturdasha	hamalau
15	fifteen	fimftehund	quindecim	pentekaideka	pymtheg	panchadasha	hamabos
16	sixteen	saihstehund	sedecim	hexkaideka	un ar bymtheg	shodasha	hamase
17	seventeen	sibuntehund	septendecim	heptakaideka	dau ar bymtheg	saptadasha	hamazazp
18	eighteen	ahtautehund	duodeviginti	oktokaideka	deunaw	ashtadasha	hemezortz
19	nineteen	niuntehund	undeviginti	enneakaideka	pedwar ar bymtheg	navadasha	hemeretz

Hidden History in Number Words

Num ber	English	Gothic	Latin	Ancient Greek	Welsh	Sanskrit	Basque
11	eleven	ainlif	undecim	hendeka	un ar ddeg	ekaadasha	hamaika
12	twelve	twalif	duodecim	dodeka	deudddeg	dvaadashan	hamabi
13	thirteen	þritehund	tredecim	treiskaideka	tri ar ddeg	trayodash a	hamahiru
14	fourteen	fidwartehund	quattuordecim	tessareskaldeka	pedwar ar ddeg	chaturdasha	hamalau
15	fifteen	fimftehund	quindecim	pentekaideka	pymtheg	panchadasha	hamabost
16	sixteen	saihstehund	sedecim	hexkaideka	un ar bymtheg	shodasha	hamasei
17	seventeen	sibuntehund	septendecim	heptakaideka	dau ar bymtheg	saptadasha	hamazazpi
18	eighteen	ahtautehund	duodeviginti	oktokaideka	deunaw	ashtadasha	hemezortzi
19	nineteen	niuntehund	undeviginti	enneakaideka	pedwar ar bymtheg	navadasha	hemeretzi
20	twenty	twaitigjus	viginti	eikosi	ugain	vimsatih	hogoi

"Eleven" = "one left" - words close in English and Gothic.

"Twelve" = "two left" - words close in English and Gothic.

We can infer that in here were northern European tribes whose counting words went up only to 'ten' then counted leftovers

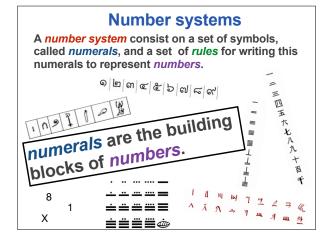
Hidden History in Number Words

Base-20 Traces

- French: "quatre-vingts-sept" = 4×20+7 = 87
- English (Bible Psalm 90:10): "three score and ten" = 3×20+10 = 70

Mixed systems show historical layers

Can you remember a historical occurrence of the word "score"?
(Where score mean 20)


Number Systems

Number systems

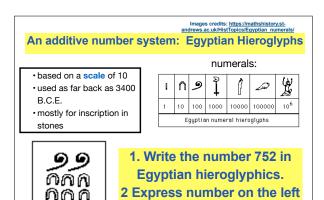
A *number system* consist on a set of symbols, called *numerals*, and a set of *rules* for writing this numerals to represent *numbers*.

Give examples in each cell of the table

OIVECX	ampies in e	acii celi oi ti	ic table
number system	numerals	numbers	rules
Hindu-Arabic ("ours")	0,1,	123410	
Roman	I, V, X	XXX IV	
Binary	0,1	100010	

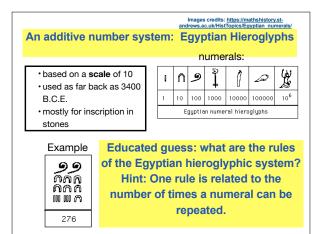
Additive number systems

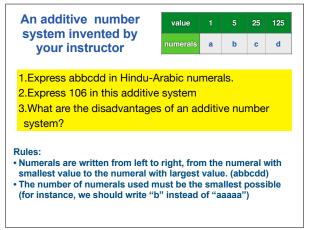
Number systems


A *number system* consist on a set of symbols, called *numerals*, and a set of *rules* for writing this numerals to represent *numbers*.

We are going to consider four characteristics of number systems

- Additive: The value of a number is the sum of the values of the numerals.
- Ciphered or alphabetic
- · Multiplicative
- Positional


ı	n	و	2	Î	D	(A)		
1	10	100	1000	10000	100000	10 ⁶		
	Equation numeral hieragluphs							


Additive: The value of a number is the Egyptian Additive Number System sum of the values of the numerals. Numeral Hieroglyph -1 A vertical stroke Desian found in several places in 10 A cattle hobble, (device used to Africa, for instance \cap carved in wooden doors in Nigeria. tie animals' legs) 100 A coiled rope n fabrication of 9 baskets in Egypt 1000 A lotus flower Also in burial sites in Ancient Egypt. 10000 A bent finger 100000 A tadpole or frog D 1000000 A figure with raised arms, sometimes interpreted as a god or a person marveling at the large number,

in Hindu-Arabic numerals.

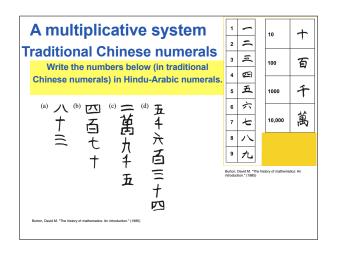
nn 000 /A

Ciphered or alphabetic number systems

Number systems A number system consist on a set of symbols, called numerals, and a set of rules for writing this numerals to represent numbers. A number system can be. Additive: Ciphered or alphabetic: Numerals design 1, 2,..9, and the powers of 10 (or, more general some base) but also to the multiples of this powers. Example: Greek Alphabetic Multiplicative Multiplicative

Positional:

5 . N			N	umera	als	
Rule: Numeral in	Letter	Value	Letter	Value	Letter	Value
ascending value,	α	1	ı	10	ρ	100
•	alpha	_	iota		rho	***
from right to left.	β	2	K	20	σ	200
Repetitions?	beta 2	3	kappa	30	sigma T	300
	gamma	3	lambda	30	tau	300
1. Write the number	δ	4	μ	40	υ	400
	delta		mu		upsilon	
752 in Greek	ε	5	ν	50	φ	500
	epsilon		nu		phi	
numerals	5	6	5	60	X	600
O T	digamma		xi		chi	
2. Translate σπγ to	5	7	0	70	Ψ	700
Hindu-Arabic.	zeta		omicron		psi	
HIIIdu-Alabic.	η	8	π	80	ω	800
	eta		pi		omega	
	θ	9	Q	90	y	900
	theta		koppa		sampi	
	able from tps://online.math.uh/	edu/Math2303-un	paid/ch1/s12/index.	hòmi		


A ciphered number system: Greek Alphabetic

Hieratic script is the cursive form of hieroglyphic. It was used for administrative and literary purposes.

What type of number system is the hieratic one? (additive, multiplicative, ciphered, positional)
Why?

1.1	10	ھر 100	1000
2 11	20 🐧	سر 200	2000
3 11	30 5	تئر 300	3000
4	40 5	400 😕	4000
5	50 7	تنہ 500	5000 X
6 Z	60 🕊	600 / 3	6000 🙎
7 4	70 1	700 15	7000 🔏
8 2	80 📫	قتر 800	8000 🚚
9 /	90 🛣	3سر 900	9000 🏂
	Hieratic n	umerals	

Greek a	lphabe	tic nume	erals			Does the Greek
Letter	Value	Letter	Value	Letter	Value	alphabetic system
α	1	ı	10	ρ	100	
alpha		iota		rho		count as additive?
β	2	K	20	σ	200	count ao additivo.
beta	_	kappa		sigma		Explain why or
γ	3	λ lambda	30	τ	300	Explain willy of
gamma S	4	u	40	tau	400	why not
delta	4	mu	40	upsilon	400	why not.
E	5	v	50	φ	500	
epsilon		nu	50	phi	200	
S	6	ξ	60	χ	600	1
digamma		xi		chi		
5	7	0	70	Ψ	700	1
zeta		omicron		psi		
η	8	π	80	ω	800	1
eta		pi		omega		
θ	9	Q	90	y	900	
theta		koppa		sampi		

