
MATH 5: HANDOUT 13

IRRATIONAL NUMBERS AND ROOTS

Irrational Numbers and Square Roots

Rational and Irrational Numbers

A rational number is a number that can be written as a ratio of two integers:

a =
p

q
, p ∈ Z, q ∈ N.

Examples include:
1

2
= 0.5,

1

3
= 0.3, −7

4
= −1.75.

Every rational number has a decimal representation that is either finite (ends) or periodic (repeats).

1

8
= 0.125 (finite),

2

11
= 0.18 (periodic).

Numbers that cannot be expressed as
p

q
are called irrational. Their decimal expansion is infinite and non-

repeating:
0.101001000100001 . . . or 0.12345678910111213 . . .

Famous examples include:
√
2 = 1.4142135 . . . , π = 3.1415926 . . . , e = 2.7182818 . . .

Irrational numbers fill the gaps between rational ones — they are “uncountably many”! Between any
two fractions there are infinitely many irrational numbers.

Quick Check

Decide whether each number is rational or irrational. Briefly explain your reasoning.

1. 0.375 2. 0.27 3.
√
2 4. π 5.

22

7

What is a Square Root?

The square root of a number a is a number whose square is a:

x2 = a.

Every positive real number a has two square roots — one positive and one negative. The positive one is
called the arithmetic (principal) square root and is written as

√
a.

√
25 = 5, but the equation x2 = 25 has two solutions: x = ±5.

Basic examples:
√
0 = 0,

√
1 = 1,

√
9 = 3,

√
1
64 = 1

8 ,
√

36
25 = 6

5 .
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Quick Check

Answer each question.

1. What does
√
a mean in words?

2. How many solutions does the equation x2 = 16 have?

3. Is
√
−4 a real number? Why or why not?

4. Circle all numbers that are perfect squares.

2, 4, 8, 9, 12, 16, 20, 25

Historical Note: Hippasus and the Discovery of Irrational Numbers

Hippasus of Metapontum

Around the 5th century BCE, the Pythagorean school in ancient Greece
believed that “everything in the universe can be expressed through whole
numbers and their ratios.”
One of their members, Hippasus of Metapontum, studied the diagonal of
a square with side 1. He found that its length d satisfies d2 = 12 + 12 = 2,
so d =

√
2.

When he tried to express
√
2 as a ratio of two integers, he discovered that

it was impossible — the side and diagonal of a square have no common
measure. In modern terms,

√
2 is irrational.

This was a shocking revelation: it showed that not all quantities can be
written as fractions. According to legend, the Pythagoreans were so dis-
turbed by this result that they cast Hippasus overboard for revealing a
truth that contradicted their belief that “all is number.”

√
2

1

1

Key properties

• (
√
a)2 = a

•
√
ab =

√
a
√
b for a, b ≥ 0

•
√
a+ b ̸=

√
a+

√
b

• For a > 0, equation x2 = a has two solutions: ±
√
a

Simplifying Square Roots

In many problems, we encounter square roots of numbers such as
√
20 or

√
72. These expressions are correct,

but they are often not written in their simplest form.

The goal of simplifying a square root is to rewrite it in a form where:

• all perfect squares have been taken out of the square root, and

• the number left inside the square root is as small as possible.

To do this, we use the identity √
ab =

√
a
√
b, for a, b ≥ 0.
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This identity allows us to factor the number inside the square root and separate any perfect square factors,
which can then be simplified.

Simplifying square roots makes expressions easier to compare, combine, and use in further calculations,
especially in algebra, geometry, and later topics such as quadratic equations.

Example 1.
√
20

Factor the number under the square root:

20 = 4 · 5.

Apply the identity: √
20 =

√
4 · 5 =

√
4
√
5.

Since
√
4 = 2, we obtain √

20 = 2
√
5.

Example 2.
√
50

Factor 50:
50 = 25 · 2.

Then √
50 =

√
25 · 2 =

√
25

√
2.

Since
√
25 = 5, we get √

50 = 5
√
2.

Example 3.
√
72

Factor 72:
72 = 36 · 2.

Thus √
72 =

√
36 · 2 =

√
36

√
2.

Since
√
36 = 6, we conclude √

72 = 6
√
2.

Example 4.
√
45

Factor 45:
45 = 9 · 5.

Then √
45 =

√
9 · 5 =

√
9
√
5.

Since
√
9 = 3, we get √

45 = 3
√
5.

Quick Check

Simplify each square root.

1.
√
12 2.

√
27 3.

√
75
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Connection to Geometry: Pythagorean Theorem

In any right triangle with legs a and b and hypotenuse c, the following relation (the Pythagorean Theorem)
holds:

a2 + b2 = c2.

b

a
c

This theorem allows us to compute the length of one side of a right triangle if the other two are known.

Example 1: If a right triangle has legs 3 and 4, then

c2 = 32 + 42 = 9 + 16 = 25 ⇒ c = 5.

It is possible — but not easy — to find more right triangles where all sides are whole numbers. The triangle
with sides 3, 4, 5 is the most famous such triangle.

Example 2: If a right triangle has a leg 10 and the hypothenuse 11, then

112 = 102 + b2 ⇒ b2 = 121− 100 = 21 ⇒ b =
√
21.

Who Was Pythagoras?

Pythagoras of Samos

Pythagoras of Samos (around 570–495 BCE) was a Greek philosopher, scien-
tist, and mathematician, best known for the Pythagorean Theorem.

He founded a secretive philosophical school in Croton, southern Italy, where
his followers — the Pythagoreans — lived almost like monks. They studied
mathematics, music, and astronomy, followed strict rules, and believed that the
universe could be understood entirely through numbers and harmony.

Pythagoras taught that numbers had mystical properties: the number 1 repre-
sented unity, 2 diversity, 3 harmony, and 10 perfection. He and his students dis-
covered that musical notes pleasing to the ear come from strings whose lengths
form simple ratios of whole numbers — a striking link between math and mu-
sic.

Their community had unusual customs. They were said to believe in reincar-
nation, to live mostly on a vegetarian diet, and even to avoid eating beans —
possibly for symbolic or ritual reasons. Members took vows of secrecy, and breaking them could lead
to expulsion.

Although legend and fact are hard to separate, Pythagoras’ ideas deeply shaped later Greek thought.
He inspired the belief that mathematics reveals the hidden order of the cosmos — a view that
influenced Plato, Kepler, and many later scientists and philosophers.

Quick Check

In the examples below, a and b are legs of the right angle triangle, and c is a hypothenuse. Find the missing
side:

1. a = 5, b = 12, c =?

2. a = 6, b =?, c = 10
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Proof of the Pythagorean Theorem

There are many proofs of the Pythagorean Theorem. Here is one of the most famous, using areas. Five more
proofs are given below.

Step 1. Construct a square of side length a+ b. Inside it, arrange four congruent right triangles with legs a
and b and hypotenuse c as shown below.

b a

b

a

ba

b

a

c

c

c

c

Step 2. The large square has area
(a+ b)2.

It is composed of four right triangles (each of area 1
2ab) and a smaller inner square of side c, area c2. So the

total area is also
4 · 1

2
ab+ c2 = 2ab+ c2.

Step 3. Equating the two expressions for the area gives:

(a+ b)2 = 2ab+ c2.

Note, that
(a+ b)2 = (a+ b)(a+ b) = a2 + ab+ ba+ b2 = a2 + 2ab+ b2.

Now, we can rewrite the equality above and simplify it:

a2 + 2ab+ b2 = 2ab+ c2 ⇒ a2 + b2 = c2.

This completes the proof. ■

For a square with side 1, the diagonal is
√
2. But what is

√
2 exactly? Let’s investigate.

Why
√
2 is Irrational

Assume, for contradiction, that
√
2 is rational:

√
2 =

p

q
, where

p

q
is reduced.

Then (
p

q

)2

= 2 ⇒ p2 = 2q2.

So p2 is even ⇒ p is even: p = 2p1. Substitute:

4p21 = 2q2 ⇒ q2 = 2p21,
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which means q is even too. Then both p and q are even — contradiction! Therefore,
√
2 cannot be written

as a fraction.

√
2 is irrational.

The discovery that
√
2 cannot be written as a fraction was only the beginning. Once mathematicians under-

stood this, they started asking:

“What about
√
3,

√
5, or

√
6?”

It turns out that the same kind of reasoning works for many other numbers.

Most square roots are irrational!

If a number a is not a perfect square, then
√
a is irrational.

A perfect square is any number that equals n2 for some integer n:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . .

So: √
4 = 2 (rational),

√
9 = 3 (rational),

√
3,

√
5,

√
6,

√
7,

√
8 are all irrational.

In fact, there are infinitely many irrational square roots — and even more astonishingly, there are infinitely
many irrational numbers between any two rational ones! The real number line is a seamless blend of both
kinds, with rational points sprinkled among an uncountable sea of irrationals.

Approximating
√
2

Since 12 = 1 and 22 = 4, the number
√
2 must lie between 1 and 2.

1 <
√
2 < 2.

Let us try to narrow this interval step by step by squaring decimal guesses.

1.32 = 1.69 too small (need a larger number)
1.42 = 1.96 still a bit less than 2
1.52 = 2.25 too large

⇒ 1.4 <
√
2 < 1.5

Now let’s zoom in again between 1.4 and 1.5:

1.412 = 1.9881 slightly below 2
1.422 = 2.0164 slightly above 2

Hence,
1.41 <

√
2 < 1.42.

Trying one more digit:
1.4142 = 1.999396, 1.4152 = 2.002225.

So,
1.414 <

√
2 < 1.415,
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which gives the familiar approximation
√
2 ≈ 1.4142 .

Fun fact: The value 1.41421356 . . . has been known since ancient times — the Babylonians approxi-
mated it as

99

70
≈ 1.4142857,

accurate to within one part in 10,000! Their clay tablets show that even 3,800 years ago, people had
clever numerical methods to estimate square roots.

Quick Check

Without a calculator, estimate each value.

1.
√
5 (between which two whole numbers?)

2.
√
20 (between which two whole numbers?)

Square Roots and Exponents

We already know how to raise numbers to integer powers:

an = a× a× · · · × a.

We are also aware of some properties of exponents, such as am · an = am+n.
But what about fractional exponents? Let’s experiment:

4
1
2 × 4

1
2 = 4

1
2+

1
2 = 41 = 4.

So 4
1
2 must be the number that multiplied by itself gives 4 — i.e. the square root of 4, i.e. 2.

Power 1
2

a
1
2 =

√
a

This keeps all the exponent rules consistent and allows us to define fractional powers with denominator
= 2:

a
1
2 × a

1
2 = a, (am)

1
2 = a

m
2 .

Beyond Square Roots

The idea of taking a root is not limited to squares.

The cube root of a number a is a number whose cube (third power) equals a:

x3 = a ⇐⇒ x = 3
√
a.

For example, 3
√
8 = 2 because 23 = 8, and 3

√
−27 = −3 because (−3)3 = −27.
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Cube roots can be positive or negative, since a negative number cubed remains negative:

3
√
8 = 2, 3

√
−8 = −2.

Similarly, we can define the fourth root, fifth root, and so on:

n
√
a is the number whose n-th power equals a.

That is,
xn = a ⇐⇒ x = n

√
a.

4
√
16 = 2 because 24 = 16,

5
√
32 = 2 because 25 = 32.

Roots and fractional powers

a
1
n = n

√
a, (a

1
n )n = a.

Fractional exponents and roots are two ways of expressing the same idea.

As we take higher and higher roots, all numbers move closer to 1:

• If a > 1, higher roots become smaller (closer to 1).

• If 0 < a < 1, higher roots become larger (closer to 1).

For a = 4: √
4 = 2,

3
√
4 = 1.587,

4
√
4 = 1.414,

10
√
4 = 1.149.

All approach 1 as the root’s degree increases.
For a = 1

4 : √
1
4 = 1

2 = 0.5, 3

√
1
4 = 0.63, 4

√
1
4 = 0.71.

Here the values rise toward 1.

Quick Check

Evaluate or explain.

1. 3
√
−64

2. 4
√
16

3. Why does 3
√
−8 exist, but

√
−8 does not?
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How Calculators Find Square Roots

When you press the
√

button, your calculator does not actually “know” the answer. Instead, it computes it by
solving the equation

x2 = a,

using a fast method that dates back almost 4,000 years!

The Babylonian (Newton) Method

Start with a guess x0 for
√
a, then repeatedly apply the rule

xn+1 =
1

2

(
xn +

a

xn

)
.

Each new value xn+1 is a better approximation of
√
a.

Let’s find
√
2 step by step, this time using fractions instead of decimals.

We start with x0 = 1 and repeatedly apply

xn+1 =
1

2

(
xn +

2

xn

)
.

x0 = 1

x1 =
1

2

(
1 +

2

1

)
=

3

2
= 1.5

x2 =
1

2

(
3

2
+

2
3
2

)
=

1

2

(
3

2
+

4

3

)
=

1

2

(
17

6

)
=

17

12
= 1.4166 . . .

x3 =
1

2

(
17

12
+

2
17
12

)
=

1

2

(
17

12
+

24

17

)
=

1

2

(
577

204

)
=

577

408
≈ 1.41422

Already after three steps we get the answer correct to four decimal places! Each step rapidly reduces the
error and brings us closer to the true value of

√
2.

Your computer or calculator performs the same kind of iteration, but in binary arithmetic and with high precision
(often 16 digits or more). Within just a few rounds, it gets the exact value your screen shows.

The same idea works for other roots!

To find the r-th root of a (for example, cube root when r = 3), the computer uses:

xn+1 =
1

r

[
(r − 1)xn +

a

xr−1
n

]
.

For 3
√
8:

x0 = 1, x1 = 1
3
(2 · 1 + 8/12) = 3.33, x2 = 1

3
(2 · 3.33 + 8/3.332) = 2.15, x3 = 2.02.

In just a few steps, we reach 2!

Historical Note

The same method appears on ancient Babylonian clay tablets (about 1800 BCE). One tablet (YBC 7289) gives
√
2 ≈ 1.414213,

which matches modern calculators to six decimal places! Isaac Newton later rediscovered the same principle in the
1600s, and it remains the foundation of modern numerical algorithms.
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Summary

• Rational numbers: can be written as
p

q
; decimal is finite or repeating.

• Irrational numbers: cannot be written as
p

q
; decimal is infinite and nonrepeating.

•
√
a is the nonnegative number whose square equals a.

•
√
a = a1/2 — fractional exponents are another way to write roots.

• Famous irrational numbers:
√
2, π, φ =

1 +
√
5

2
(the golden ratio).
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Homework

1. Convert each fraction into a decimal:

(a) 1
8 (b) 5

6 (c) 1
13

2. Convert the following decimals into fractions:

(a) 0.015 (b) 0.28 (c) 0.420 (d) 0.125 (e) 0.6776

3. Convert the following fractions into decimals:

1
7 ,

2
7 ,

3
7 ,

4
7 ,

5
7 ,

6
7

Do you notice any pattern in the decimal expansions?

4. Evaluate:
102 + 112 + 122 + 132 + 142

365

5. Prove that each value is rational.

(a) (
√
2− 1)(

√
2 + 1)

(b) (
√
5−

√
3)(

√
5 +

√
3)

(c) (
√
2 + 1)2 + (

√
2− 1)2

(d) (
√
7− 1)2 + (

√
7 + 1)2

(e) (
√
7− 2)2 + 4

√
7

6. Without a calculator, compare each pair (write <, >, or =).

3 □
√
11 11 □

√
110 22 □

√
484

5 □
√
20 17 □

√
299 35 □

√
1215

7. In each right triangle below, find the length of the unknown side.

(a) The legs measure 2 and 5. Find the hypotenuse.

(b) The hypotenuse measures 7, and one leg is 6. Find the other leg.

8. Evaluate (simplify radicals when possible).

(a) 5 ·
√
4 · 3

(b) 2 ·
√
9 + 3 ·

√
16

(c)
√
13− 3 · 3

(d)

√
72 − 26

2

(e)
1

2

√
52 +

22

2

(f) 3
√
0.64− 5

√
1.21

9. Find the following square roots. If you cannot find the exact number, state between which two whole
numbers it lies (for example, “between 5 and 6”).

(a)
√
16 (b)

√
81 (c)

√
10,000 (d)

√
108 (e)

√
50

10. Simplify each square root using the identity
√
ab =

√
a
√
b, a, b ≥ 0.

(a)
√
18 (b)

√
27 (c)

√
32

11. Find: √
26 × 72,

√
1

16
,

√
4

9
.

12. Find the height and area of the figure below. Lengths of three sides are given; the two marked angles
are right angles.
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21

15

10

13. The side of an equilateral triangle is 1 m. Find its height and its area.

*14. Iterative experiment. Take some positive number x < 100 and, using a calculator or computer,
compute

xnew =
x

2
+

1

x
.

Then repeat the same calculation 10 times, each time using the previous result as the new x. Finally,
square the result.

What number do you get? Try the same experiment starting with different initial values of x. Is the
result surprising?
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