
MATH 5: HANDOUT 12

FRACTIONS AND DECIMALS

Fractions Refresher

Prime Factorization, GCD, and LCM

• A number a is a divisor (or factor) of a number b if it divides b exactly, that is, if b÷ a is an integer.

Example: 3 is a divisor of 12 because 12÷ 3 = 4.

a | b means “a divides b.”

• A number b is a multiple of a if it can be written as b = a× k for some integer k.

Example: 12 is a multiple of 3 since 12 = 3× 4.

• A prime number is a number greater than 1 that has no divisors other than 1 and itself. Alterna-
tively, we can say that a prime number is a number with exactly two divisors — that will exclude 1
automatically. Examples: 2, 3, 5, 7, 11, 13, 17, . . .

• Every integer greater than 1 can be written uniquely as a product of prime numbers. This is called its
prime factorization.

84 = 22 · 3 · 7

Finding Prime Factorization

There are two main ways to find the prime factorization of a number.

1. Repeated Division Method:
Keep dividing the number by the smallest possible prime until you reach 1.

84 2
42 2
21 3
7 7
1 stop

⇒ 84 = 2× 2× 3× 7 = 22 · 3 · 7.

2. Factor Tree Method:
Split the number into any two factors and keep breaking down until all factors are prime.

84

12 7

3 4

2 2

Again, 84 = 22 · 3 · 7.

Both methods give the same result. The order of the factors may differ, but the set of primes and their
powers is always unique!
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Greatest Common Divisor (GCD): The GCD (also called the greatest common factor, GCF) of two or more
numbers is the largest number that divides all of them.

Methods:

1. By listing factors:
12 : {1, 2, 3, 4, 6, 12}, 18 : {1, 2, 3, 6, 9, 18}.

Common factors: {1, 2, 3, 6}. So GCD(12, 18) = 6.

2. By prime factorization:
12 = 22 · 3, 18 = 2 · 32.

Take the smallest powers of common primes: 21 · 31 = 6.

Least Common Multiple (LCM): The LCM of two or more numbers is the smallest positive number that is
a multiple of all of them.

Methods:

1. By listing multiples:
12 : 12, 24, 36, 48, 60, . . . 18 : 18, 36, 54, 72, . . .

The first common multiple is 36, so LCM(12, 18) = 36.

2. By prime factorization:
12 = 22 · 3, 18 = 2 · 32.

Take the largest powers of each prime: 22 · 32 = 36.

Connection between GCD and LCM: For any positive integers a and b,

a · b = GCD(a, b) · LCM(a, b).

These ideas — prime factorization, GCD, and LCM — form the foundation for working with rational numbers,
and we’ll use them again when we discuss decimals, reciprocals, and sets of numbers.

Quick Check

1. Find the prime factorization of 90.

2. Find gcd(18, 30) using prime factorizations.

3. Find lcm(8, 12) using prime factorizations.

4. Check that the relationship
a · b = gcd(a, b) · lcm(a, b)

holds for a = 15 and b = 20.

Fractions: Review of Operations

A fraction represents a part of a whole. It has two parts:

numerator
denominator .

• The numerator (top number) tells how many parts we have.

• The denominator (bottom number) tells how many equal parts the whole is divided into.

Examples:

1
2 means 1 part out of 2 equal parts (a half), 3

4 means 3 parts out of 4 equal parts.
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Proper and Improper Fractions:

• A proper fraction has a numerator smaller than the denominator, e.g. 3
5 .

• An improper fraction has a numerator equal to or larger than the denominator, e.g. 7
5 .

Equivalent Fractions: Two fractions are equivalent if they represent the same part of a whole, even if the
numbers look different.

1
2 = 2

4 = 3
6 = 50

100 .

To find an equivalent fraction, multiply or divide both numerator and denominator by the same nonzero
number:

2
3 = 2×5

3×5 = 10
15 .

The value doesn’t change, only the way it’s written.

Simplifying (Reducing) Fractions: To simplify a fraction, divide numerator and denominator by their
greatest common divisor (GCD):

24
36 = 24÷12

36÷12 = 2
3 .

Remember:
Changing how a fraction looks does not change its value.

Equivalent fractions are different names for the same number.

Finding Common Denominators: When adding or comparing fractions, rewrite them with a common
denominator — usually the LCM of denominators.

Adding and Subtracting Fractions:

a
b + c

d = ad+bc
bd ,

a
b − c

d = ad−bc
bd .

Examples:
2
3 + 5

4 = 8+15
12 = 23

12 = 1 11
12 ,

3
5 − 1

10 = 6−1
10 = 1

2 .

Multiplying and Dividing Fractions:

a
b · c

d = ac
bd ,

a
b ÷ c

d = a
b · d

c = ad
bc .

Example:
2
3 × 9

10 = 18
30 = 3

5 ,
5
8 ÷ 3

4 = 5
8 × 4

3 = 5
6 .

Mixed Numbers and Improper Fractions A mixed number combines a whole number and a proper
fraction:

1 3
4 , 2 2

5 , 5 7
8 .

An improper fraction is one where the numerator is greater than or equal to the denominator:

7
4 ,

12
5 , 47

8 .

Conversion:

1 3
4 = 1·4+3

4 = 7
4 ,

11
5 = 2 1

5 (since 11 = 2 · 5 + 1).

When to Use Each Form:
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• Use mixed numbers when describing quantities or measurements in words (e.g., “2 1
2 hours” or “3 3

4
cups of flour”). They’re easier to read and visualize.

• Use improper fractions when performing calculations — addition, subtraction, multiplication, or di-
vision — because they are easier to work with algebraically.

Example:
1 3
4 + 2 2

3 = 7
4 + 8

3 = 21+32
12 = 53

12 = 4 5
12 .

We convert to improper fractions to compute, and then (optionally) back to a mixed number at the end.

Quick Check

1. Decide whether each fraction is proper or improper:

7

10
,

15

8
,

9

9
.

2. Simplify the fraction
18

30
.

3. Compute and simplify:
3

4
+

5

6
.

4. Compute and simplify:
7

9
· 6
7
.

5. Rewrite 2
3

5
as an improper fraction, then subtract:

2
3

5
− 4

5
.

Sets

A set is a collection of elements. In mathematics, sets usually contain numbers. Although the idea is simple,
giving a fully precise definition of a “set” is actually quite difficult, and mathematicians usually work with
examples and intuitive understanding rather than formal definitions at this level.

The main sets of numbers we work with are:

• N: Natural numbers 1, 2, 3, . . . .

– Operations that stay inside N: addition (2 + 3 = 5), multiplication (2 · 3 = 6).

– But subtraction does not always stay in N: for example, 1− 2 is not a natural number. To handle
such cases, we need a larger set.

• Z: Integers . . . ,−3,−2,−1, 0, 1, 2, 3, . . . .

– Here we can add, subtract, and multiply without leaving the set of integers.

– But division is a problem: 1
2 is not an integer. To include such numbers, we need another expan-

sion.

• Q: Rational numbers, i.e., numbers that can be written as fractions p
q where p, q ∈ Z and q ̸= 0.

– In Q we can add, subtract, multiply, and divide (except division by 0).

– This makes Q the most flexible set for arithmetic.
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Thus we have a natural hierarchy:
N ⊂ Z ⊂ Q.

Each new set of numbers was created because the previous one was not sufficient to perform all the opera-
tions we wanted.

Example: 5 ∈ N,−7 ∈ Z, 3
4 ∈ Q.

Quick Check

1. For each number, say which sets it belongs to:

4, −3,
5

2
.

(Choose from N,Z,Q; some numbers belong to more than one.)

2. Give an example of a subtraction problem with natural numbers whose difference is not a natural
number.

3. Give an example of a division problem with integers whose quotient is not an integer but is a rational
number.

4. Place these sets in order using ⊂ symbols:
N, Q, Z.

Fractions and Decimals

Every rational number can be expressed as a decimal. Some fractions give finite decimals (e.g., 1
2 = 0.5),

others give infinite repeating decimals (e.g., 2
7 = 0.285714285714 · · · = 0.285714).

We convert fractions to decimals using long di-
vision. The process either ends (finite decimal) or
eventually repeats (repeating decimal).

Example 1 (Finite (or terminating) decimal):

3
4 = 0.75

Example 2 (Repeating decimal): Perform long
division for 2

7 :

0.285714285714 · · · = 0.285714.

0 . 2 8 5 7 1 4 2

7 2 . 0 0 0 0 0 0 0

1 . 4

6 0

− 5 6

4 0

− 3 5

5 0

− 4 9

1 0

− 7

3 0

− 2 8

2 0

Why Every Fraction Either Ends or Repeats

When we convert a fraction to a decimal using long division, only two things can happen:

• The division ends (remainder becomes 0) — giving a finite (terminating) decimal.

• The division never ends, but the same remainders start to repeat — giving a repeating decimal.

Why must one of these happen?
When dividing by a denominator d, each remainder must be one of the numbers

0, 1, 2, 3, . . . , d− 1.
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There are only d possible remainders! If the remainder becomes 0, the decimal ends. If not, some
remainder must eventually repeat — and from that point on, the digits will repeat too.

Examples:

1
2 = 0.5 (ends because remainder = 0)

1
3 = 0.333 . . . = 0.3 (repeats because remainder repeats)

2
7 = 0.285714285714 . . . = 0.285714

So every rational number (fraction) gives either a terminating or repeating decimal—never something
else. Numbers whose decimals never end and never repeat (like π or

√
2) are called irrational.

Which Fractions End and Which Repeat? A fraction in simplest form p
q will have a terminating decimal

if and only if the denominator q has no prime factors other than 2 or 5.

If q contains any other prime factor (like 3, 7, or 11), the decimal will be repeating.

Fraction Denominator factors Decimal type

1/2 2 terminating (0.5)
1/4 22 terminating (0.25)
1/5 5 terminating (0.2)
1/8 23 terminating (0.125)

1/3 3 repeating (0.3)
1/6 2× 3 repeating (0.16)
1/7 7 repeating (0.142857)
1/9 32 repeating (0.1)
1/12 22 × 3 repeating (0.083)

Rule to remember:
Only denominators of the form 2m5n give finite decimals.

All others produce repeating decimals.

Why Only Denominators with 2s and 5s Give Finite Decimals

Every decimal comes from dividing a numerator by a denominator. A decimal stops (terminates) only
if the denominator “fits” into some power of 10.

Step 1. Powers of 10 look like this:

10 = 2× 5, 100 = 102 = (2× 5)2 = 22 × 52, 1000 = 103 = (2× 5)3 = 23 × 53, and so on.

Every power of 10 has only the prime factors 2 and 5.

Step 2. If the denominator of a fraction (after simplifying) has only 2s and 5s, we can multiply top and
bottom by something to make the denominator a power of 10. Then the fraction will become an exact
decimal.

3

8
=

3

23
=

3

23
× 53

53
=

3× 125

23 × 53
=

3× 125

1000
=

375

1000
= 0.375

7

20
=

7

22 × 5
=

7

22 × 5
× 5

5
=

7× 5

22 × 52
=

35

100
= 0.35
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Step 3. But if the denominator contains any other prime factor (like 3, 7, or 11), no power of 10 will
divide evenly by that factor, so the division will never end — the remainder will eventually repeat.

1

6
=

1

2× 3
has a 3 in the denominator ⇒ 0.16.

1

7
has a 7 ⇒ 0.142857.

Conclusion:

If the denominator has only 2s and 5s, it can be turned into a power of 10, so the decimal ends.

All other denominators give repeating decimals.

Quick Check

1. Decide whether each fraction has a terminating or repeating decimal. Justify using the prime factor-
ization of the denominator.

7

20
,

5

12
,

9

25
.

2. Without doing full long division, explain why
1

40
has a finite decimal.

3. Without doing full long division, explain why
3

14
has a repeating decimal.

Converting Decimals to Fractions

Every decimal number represents a fraction whose denominator is a power of 10 — possibly simplified later.

1. Finite (terminating) decimals Move the decimal point to make an integer and divide by the corre-
sponding power of 10 (1 followed by a suitable number of zeroes).

0.6 = 6
10 = 3

5 , 0.125 = 125
1000 = 1

8 , 3.75 = 375
100 = 15

4 .

Rule: If a decimal has n digits after the decimal point, multiply numerator and denominator by 10n (1
followed by n zeroes) to remove the decimal, then simplify.

Example: 0.072 = 72
1000 = 9

125 .

2. Repeating decimals Let the repeating block be called the repetend. Use algebra to find the fraction.
Example 1: Convert 0.3 to a fraction.

x = 0.3333 . . .

Multiply both sides by 10:
10x = 3.3333 . . .

Subtract the first equality:
9x = 3 ⇒ x = 1

3 .

Example 2: Convert 0.27 to a fraction.

x = 0.272727 . . .
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Multiply by 100 (since 2 digits repeat):
100x = 27.272727 . . .

Subtract the first equality:
99x = 27 ⇒ x = 27

99 = 3
11 .

Example 3: Convert 0.16 to a fraction.

x = 0.1666 . . .

Multiply by 10:
10x = 1.6666 . . .

Multiply by 100:
100x = 16.6666 . . .

Subtract the first from the second:
90x = 15 ⇒ x = 15

90 = 1
6 .

Repeating decimals always correspond to rational numbers — this is one reason why we call all fractions
and repeating decimals “rational numbers.”

Why 0.9 = 1

At first glance, 0.9999 . . . looks like it should be just a tiny bit less than 1. However, mathematically
they are exactly equal.

Algebraic reasoning:
Let

x = 0.9999 . . .

Multiply both sides by 10:
10x = 9.9999 . . .

Now subtract the first equality from the second:

10x− x = 9.9999 . . .− 0.9999 . . . = 9

so
9x = 9 ⇒ x = 1.

Hence, 0.9999 . . . = 1.

Conclusion:
0.9 and 1 are two different ways to write the same number.

The number line has no “gap” between them.

Irrational Numbers and Why
√
2 Is Not Rational

Not every number can be written as a fraction!
Rational numbers are those that can be expressed as p

q , where p and q are integers and q ̸= 0.
Irrational numbers are numbers that cannot be written as a fraction. Their decimal expansions never
end and never repeat.

Examples:
π = 3.1415926535 . . . ,

√
2 = 1.414213562 . . .

These decimals go on forever with no pattern.
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A simple proof that
√
2 is not rational:

Suppose, just for the sake of argument, that
√
2 is rational. Then we could write it as a fraction in

lowest terms: √
2 = a

b ,

where a and b are integers that share no common factor.

Now square both sides:
2 = a2

b2 ⇒ a2 = 2b2.

This means a2 is even (because it’s 2 times another integer), so a must also be even. Let’s write a = 2k.

Substitute back:
(2k)2 = 2b2 ⇒ 4k2 = 2b2 ⇒ b2 = 2k2.

Now b2 is also even, so b is even too.

But then both a and b are even — they have a common factor 2. That contradicts our assumption that
the fraction was in simplest form.

⇒ Our assumption was wrong:
√
2 cannot be written as a fraction.

Conclusion:
√
2 and π are examples of irrational numbers — their decimals never end and never repeat.

Together with the rational numbers, they form the set of real numbers R:

N ⊂ Z ⊂ Q ⊂ R.

Quick Check

1. Write each finite decimal as a fraction in simplest form:

0.48, 2.05, 0.007.

2. Convert 0.6 to a fraction using algebra.

3. Convert 0.27 to a fraction using algebra.

4. True or false: every repeating decimal represents a rational number. Explain briefly.

Reciprocals

Definition. For any nonzero number a, the reciprocal of a is the number that multiplies with a to give 1.

a · r(a) = 1.

We often write the reciprocal of a as 1
a .

r(a) = 1
a , r

(
p
q

)
= q

p .

Examples:
r(5) = 1

5 , r
(
3
8

)
= 8

3 , r(0.2) = 5, r
(
1 1
3

)
= 3

4 .
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Why do we need reciprocals? Reciprocals let us “undo” multiplication — just like negative numbers let
us “undo” addition.

Additive opposite: a+ (−a) = 0

Multiplicative opposite: a× 1
a = 1

So: - The number −a cancels a when we add. - The number 1
a cancels a when we multiply.

Example:
5× 1

5 = 1, 3
4 × 4

3 = 1, (−2)×
(
− 1

2

)
= 1.

Notice that the reciprocal of a negative number is also negative.

Why reciprocals matter.

• Division: Dividing by a number means multiplying by its reciprocal:

a
b ÷ c

d = a
b × d

c .

• Solving equations: To “get rid of” a coefficient in multiplication, multiply both sides by its reciprocal.

5x = 20 ⇒ x = 20× 1
5 = 4.

Note: Zero has no reciprocal, because no number multiplied by 0 can ever give 1.

Opposites and Reciprocals

In math, every operation has a way to “undo” it.

Concept Operation it undoes Example

Additive opposite (negative) Addition 5 + (−5) = 0

Multiplicative opposite (reciprocal) Multiplication 5× 1
5 = 1

So:
To “cancel” a number under addition, use its negative.

To “cancel” a number under multiplication, use its reciprocal.

Examples:
−7 is the additive opposite of 7, 7 + (−7) = 0.

1
7 is the multiplicative opposite of 7, 7× 1

7 = 1.

Just like 0 is the “neutral” number for addition, 1 is the neutral number for multiplication.

a+ 0 = a, a× 1 = a.

Quick Check

1. Find the reciprocal of each number:

4, −3

5
, 0.25.

2. Which number has no reciprocal? Explain why.
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3. Use reciprocals to solve the equation
3

4
x = 9.

4. Check that each pair of numbers are reciprocals by multiplying them:

5

6
and

6

5
, −2 and − 1

2
.
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