
MATH 7: HANDOUT 11
NUMERAL SYSTEMS

Numeral Systems Through History
Over the long centuries of human history, many different numeral systems have appeared in different cul-
tures. The oldest systems were not place-valued: each symbol had its own meaning, and the value of a number
did not depend on its position. Numbers were written by repeating symbols and adding their values.

Ancient Egyptian System
One of the best-known examples of such a system is the ancient Egyptian decimal system. It was based
on powers of 10, just like ours, but it had no zero and no positional place values. Symbols could appear in
different orders and were often read from right to left or from bottom to top.

Temple of Edfu inscription
(History of Ancient Egyptian Numbers)

The Egyptian hieroglyphs given on the right, from the Tem-
ple of Edfu (237–57 BCE), represent the number 1,333,330:

7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2
76

6
6555444

333
222

The Egyptian symbols for powers of ten are:
• Single stroke (|)—represents 1
• Heel bone (2)—represents 10
• Scroll or rope coil (3)—represents 100

• Lotus flower (4)—represents 1,000

• Pointing finger (5)—represents 10,000

• Tadpole or frog (6)—represents 100,000

• Astonished god (Heh) (7)—represents 1,000,000

1 10 100 1,000 10,000 100,000 1,000,000
| 2 3 4 5 6 7

To write a number, each symbol is repeated up to nine times.
For example:

4,321 = 4444 3 3 3 22 | = 4444333 22|

57,213 = 5 5 5 5 5 4444444 3 3 2 | | | = 555554444444332|||
In other words: Egyptians simply “stacked” symbols and added them. There was no special placeholder

for “nothing in the tens place,” because there were no places. This is very different from how we write, for
example, 5 0 3 to mean “five hundreds, zero tens, three ones.”
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An Egyptian Inscription from the Louvre

The inscription on the right (from the Louvre Museum) shows numerals carved
in columns. The calf at the top faces to the right, so the text is read from top
to bottom and, within each line, from right to left.

The number shown consists of:
• four lotus flowers (4× 1,000),
• six coils of rope (6× 100),
• two hobbles for cattle (2× 10),
• and two single strokes (2× 1).

Altogether this is 4,622. Since this inscription comes right after the word “calf,”
it means “4,622 calves.”

4,622 = 4444 3 3 3 3 3 3 22 | | =
4444333333||22

Inscription from the
Louvre

(An Ancient Egyptian
Mathematical Photo

Album)

Practice: Egyptian Numerals
1. Write the following numbers using Egyptian symbols:

37, 205, 1,204, 6,315.

(Hint: use the correct number of strokes, heel bones, coils, and lotus flowers.)
2. Write the following Egyptian numerals as regular numbers:

22||| 4332| 7422

3. Which of these two numbers is larger?
223 or 233

Fractions. Fractions in ancient Egypt were almost exclusively unit fractions. The notation that was used
to signify a fraction: a mouth hieroglyph representing “part.” The rare exceptions to unit fractions include
special symbols for 1

2 , 2
3 , 1

4 , and 3
4 .

Egyptian fractions: 1
6 , 1

16 , 1
120 , 1

2 + 1
3 = 5

6 , 2
3 + 1

6 = 5
6 . In the right two pictures, notice special symbols for 1

2
and 2

3 . (An Ancient Egyptian Mathematical Photo Album)
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Babylonian System
Another ancient civilization, the Babylonians (around 2000 BCE), invented a completely different system.
The Babylonians used only two wedge-shaped symbols to write every number from 1 to 59. Their numeration
was based on 60 (a sexagesimal system). Inside each “digit,” they combined groups of 10-wedges and 1-
wedges, so it still looks a little bit like tens and ones.

Even more importantly, the Babylonian system was positional. The same cluster of wedges could mean
“12,” or “12 sixties,” or “12 sixty-squared,” depending on where it appeared. For example, the number 62
was written as

𒁹 𒈫

which means 1× 60 + 2.

Base-60 in the Modern World

The Babylonian system may be ancient, but traces of it are still all around us!
• Time: We divide an hour into 60 minutes, and each minute into 60 seconds. This idea goes

directly back to ancient Babylonian astronomy, where base-60 made it easy to divide circles and
time intervals into many equal parts.

• Angles and Circles: A full circle has 360 degrees – that’s 6× 60. Each degree has 60 minutes
(′) and each minute has 60 seconds (″). Again, this comes from Babylonian geometry, where the
sky was imagined as a great 360-part circle.

• Geographic Coordinates: Latitude and longitude are written in degrees, minutes, and seconds:

40◦48′25′′ N, 73◦7′23′′ W.

This is the same base-60 subdivision the Babylonians used for stars and planets.

Why 60? Sixty is a very convenient number for dividing:

60 = 22 × 3× 5,

so it has 12 factors — more than any smaller positive number. That means it divides evenly by 2, 3, 4,
5, and 6, making fractions neat:

60
2 = 30, 60

3 = 20, 60
4 = 15, 60

5 = 12, 60
6 = 10.

No wonder the Babylonians liked it!

Babylonian numerals from 1 to 60:
1 𒁹 2 𒈫 3 𒐈 4 𒃻 5 𒐊
6 𒐋 7 𒐌 8 𒐍 9 𒐎 10 𒌋

11 𒌋𒁹 12 𒌋𒈫 13 𒌋𒐈 14 𒌋𒃻 15 𒌋𒐊
16 𒌋𒐋 17 𒌋𒐌 18 𒌋𒐍 19 𒌋𒐎 20 𒌋𒌋
21 𒌋𒌋𒁹 22 𒌋𒌋𒈫 23 𒌋𒌋𒐈 24 𒌋𒌋𒃻 25 𒌋𒌋𒐊
26 𒌋𒌋𒐋 27 𒌋𒌋𒐌 28 𒌋𒌋𒐍 29 𒌋𒌋𒐎 30 𒌍
31 𒌍𒁹 32 𒌍𒈫 33 𒌍𒐈 34 𒌍𒃻 35 𒌍𒐊
36 𒌍𒐋 37 𒌍𒐌 38 𒌍𒐍 39 𒌍𒐎 40 𒐏
41 𒐏𒁹 42 𒐏𒈫 43 𒐏𒐈 44 𒐏𒃻 45 𒐏𒐊
46 𒐏𒐋 47 𒐏𒐌 48 𒐏𒐍 49 𒐏𒐎 50 𒐐
51 𒐐𒁹 52 𒐐𒈫 53 𒐐𒐈 54 𒐐𒃻 55 𒐐𒐊
56 𒐐𒐋 57 𒐐𒐌 58 𒐐𒐍 59 𒐐𒐎 60 𒁹

Because Babylonian is positional, bigger numbers work like this:
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𒁹 𒈫 = 1× 60 + 2 = 62

𒈫 𒐊 = 2× 60 + 5 = 125

𒈫 𒌍𒐌 𒌋𒈫 = 2× 602 + 37× 60 + 12 = 9,432

To show Babylonian place values using our digits, we separate the base–60 “digits’’with commas. For
example,

𒁹 𒐐𒐌 𒐏𒐋 𒐏 = (1, 57, 46, 40)60 = 1 · 603 + 57 · 602 + 46 · 60 + 40 = 424,00010.

So the Babylonian number “1,57,46,40” means 424,000 in our decimal notation.
Interestingly, Babylonians lacked a symbol for 0, and just left a space where 0 was supposed to be, so Baby-
lonian number for 60 𒁹 was not different from their number for 1, or 602 = 3, 600.

Practice: Babylonian Numerals
1. Write the following base-10 numbers in the Babylonian base-60 system (showing each “digit” as a num-

ber between 0 and 59):
73, 125, 3,600, 3,726.

(Hint: divide by 60 repeatedly.)
2. Express these Babylonian numbers in our base-10 system:

𒁹 𒌋𒐈, 𒈫 𒐊 𒌍, 𒌋𒌋𒐌 𒐏𒐊.

(Example: 𒃻 𒌋 𒌋𒌋𒁹 = (4, 10, 21)60 = 4× 602 + 10× 60 + 21 = 15,021.)

Roman Numerals
Long after the Egyptians, the Romans used their own system of writing numbers. We still see it today on
clocks, movie credits (MCMLXXXIV for 1984), book chapters, and the Super Bowl.

Roman numerals are built from just seven basic symbols:

Symbol Value
I 1
V 5
X 10
L 50
C 100
D 500
M 1000

How Roman numerals are formed.
• If a symbol of smaller or equal value comes after a larger one, you add. Example: VI = 5 + 1 = 6.

Example: XVIII = 10 + 5 + 1 + 1 + 1 = 18.
• If a symbol of smaller value comes before a larger one, you subtract. Example: IV = 5−1 = 4. Example:

IX = 10− 1 = 9.
• You write numbers by combining these additions and subtractions, biggest parts first.
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Important subtraction patterns. The Romans did not just put anything before anything else. Only certain
“subtract” pairs are allowed:

• I can go before V (5) or X (10): IV = 4, IX = 9.
• X can go before L (50) or C (100): XL = 40, XC = 90.
• C can go before D (500) or M (1000): CD = 400, CM = 900.
Other “creative” subtractions like IL for 49 or XM for 990 are not standard.

Reading Roman numerals. To read a Roman numeral:
1. Look left to right.
2. If a symbol is at least as big as the one after it, add it.
3. If it is smaller than the one after it, subtract it.

Example: MCMXLIV

MCMXLIV = M + (CM) + (XL) + (IV) = 1000 + 900 + 40 + 4 = 1944.

Let’s check step by step:
• M = 1000

• CM = 900 (1000− 100)
• XL = 40 (50− 10)
• IV = 4 (5− 1)

So MCMXLIV = 1944.

Writing Roman numerals. To write a number in Roman numerals, you usually:
1. Split the number by place values (thousands, hundreds, tens, ones).
2. Write each part using the allowed patterns.
Examples:

27 = 20 + 7 = XX + VII = XXVII.

49 = 40 + 9 = XL + IX = XLIX.

2024 = 2000 + 20 + 4 = MM + XX + IV = MMXXIV.

3999 = 3000 + 900 + 90 + 9 = MMM + CM + XC + IX = MMMCMXCIX.
Notice that:
• XX = 20 is just 10 + 10.
• IX = 9 uses subtraction.
• MMM = 3000 repeats M up to three times.

Repetition rule. Some symbols can repeat up to three times in a row:
III = 3, XXX = 30, CCC = 300, MMM = 3000.

But you cannot write four in a row. So:
4 ̸= IIII (not allowed), use IV.

40 ̸= XXXX, use XL.
Also: V, L, and D are never repeated twice in a row. There is no VV for 10, or LL for 100, or DD for 1000.
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No zero. Roman numerals have symbols for 1, 5, 10, 50, …, but there is no symbol for 0. This made certain
arithmetic and bookkeeping tasks much harder than with the place-value system we use today. (Imagine
trying to do long multiplication in Roman numerals. People basically didn’t. They used counting boards /
abaci.)

Practice: Roman Numerals
1. Write each in normal (Arabic) numbers:

XLII, CDXVI, MMXVIII, CMXC.

2. Write each in Roman numerals:
14, 70, 944, 2025.

Why we still care

Roman numerals are not very convenient for calculation —Egyptian numerals and Roman numerals
are both “additive/subtractive” systems, not true place-value systems like ours. But they’re historically
important, and they’re everywhere in art, archaeology, monuments, and old documents. Reading them
is like reading a date carved in stone.

Building Our Own Number System: Base 5
The Babylonians used base 60—an unusual but very powerful place-value system. Let’s try to build a simpler
one ourselves: a base 5 system.

Digits
In base 5, each “place” represents a power of 5 instead of 10. That means we only need the digits

0, 1, 2, 3, 4.

Once we reach 4, the next number is written as 105, which means “one group of 5 and zero ones.”

Place values
Place value 54 53 52 51 50

Value in base 10 625 125 25 5 1

Just like in base 10, the rightmost digit counts “ones,” the next counts “fives,” then “twenty-fives,” and so
on.

Reading a base 5 number
To read a base 5 number, multiply each digit by the power of 5 it represents and add:

Example: (243)5 = 2× 25 + 4× 5 + 3 = 50 + 20 + 3 = 7310.

Writing a base 10 number in base 5
To convert a normal (base 10) number into base 5, repeatedly divide by 5 and record the remainders.

73÷ 5 = 14 remainder 314÷ 5 = 2 remainder 42÷ 5 = 0 remainder 2
Reading remainders from bottom to top gives (243)5.
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A few examples
Base 10 Base 5

1 1
4 4
5 10
9 14
10 20
25 100
37 122
125 1000

Why this works. Base 5 follows exactly the same principle as our familiar base 10: each column represents
a power of the base. The only difference is which powers we use.

Base 10: 100, 101, 102, 103, . . .Base 5: 50, 51, 52, 53, . . .
Every whole number can be written in base 5 — it just uses fewer symbols, and each “place” grows five

times larger instead of ten.

Counting in Base 5

Base-10 Base-5 Base-10 Base-5 Base-10 Base-5 Base-10 Base-5 Base-10 Base-5
0 0 10 20 20 40 30 110 40 130
1 1 11 21 21 41 31 111 41 131
2 2 12 22 22 42 32 112 42 132
3 3 13 23 23 43 33 113 43 133
4 4 14 24 24 44 34 114 44 134
5 10 15 30 25 100 35 120 45 140
6 11 16 31 26 101 36 121 46 141
7 12 17 32 27 102 37 122 47 142
8 13 18 33 28 103 38 123 48 143
9 14 19 34 29 104 39 124 49 144

Arithmetic in Base 5
We can add and multiply numbers directly in base 5, using the same logic as in base 10 — we just regroup
(carry) whenever we reach 5 instead of 10.

Addition. Let’s add (243)5 + (132)5.:

2 4 35
+ 1 3 25

4 3 05

Starting from the right:
• 3 + 2 = 5 ⇒ 0 with a carry of 1.
• 4 + 3 + 1(carry) = 8 ⇒ 3 with a carry of 1 (since 8 = 5 + 3).
• 2 + 1 + 1(carry) = 4.

So the result is (430)5. Check by converting:
(243)5 = 7310, (132)5 = 4210, (430)5 = 11510.

It works!
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Multiplication. Multiply (13)5 × (4)5.
Think: 35×45 = 1210 = 225 (since 2×5+2 = 12). Carry the 2 into the next column: 45×15+25 = 610 = 115

(13)5 × (4)5 = (112)5.

Verification: (13)5 = 810, (4)5 = 410, (112)5 = 3210.

Carrying and Borrowing. In subtraction, borrow a group of 5 instead of a group of 10.

(204)5 − (13)5 =
2 0 45

− 0 1 35
1 4 15

Everything works the same way — only the base changes!

Practice: Base 5 Numbers
1. Write these base 5 numbers in base 10:

(13)5, (204)5, (4013)5, (1002)5.

2. Convert these base 10 numbers into base 5:
7, 18, 65, 123.

3. What pattern do you notice when counting in base 5 from 1 to 20?

Challenge: Imagine an alien civilization that uses base 5 because they have five fingers total. How would
they write 202510 in their own system?

Binary Numbers (Base 2)
Why Binary?
Our number system is based on ten digits (0-9) because we have ten fingers. But computers don’t have fingers
— they have tiny electronic switches that can only be on or off.

These two states can be represented by just two digits:
OFF = 0, ON = 1.

Because of this, computers use the binary system (base 2), which has only two symbols: 0 and 1.

Two-State Logic

In electronics:
• High voltage → 1
• Low voltage → 0

Every circuit, image, and sound on your device is ultimately made of long chains of these two values!

Place Values in Binary
Just like base 10 uses powers of 10, binary uses powers of 2.

Place 27 26 25 24 23 22 21 20

Value (base 10) 128 64 32 16 8 4 2 1
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Reading a Binary Number
Each position tells you how many of that power of 2 you have.

(1011)2 = 1× 8 + 0× 4 + 1× 2 + 1× 1 = 1110.

Writing a Number in Binary
To convert from base 10 to binary, repeatedly divide by 2 and record the remainders.

25÷ 2 = 12 R1, 12÷ 2 = 6 R0, 6÷ 2 = 3 R0, 3÷ 2 = 1 R1, 1÷ 2 = 0 R1.
Reading remainders from bottom to top gives (11001)2.

Quick Check

(11001)2 = 1× 16 + 1× 8 + 0× 4 + 0× 2 + 1× 1 = 2510.

Always test your conversions both ways!

Counting in Binary
10 2 10 2 10 2 10 2
0 0 8 1000 16 10000 24 11000
1 1 9 1001 17 10001 25 11001
2 10 10 1010 18 10010 26 11010
3 11 11 1011 19 10011 27 11011
4 100 12 1100 20 10100 28 11100
5 101 13 1101 21 10101 29 11101
6 110 14 1110 22 10110 30 11110
7 111 15 1111 23 10111 31 11111

Side Note: Bit, Byte, and Beyond
• One binary digit = a bit.
• 8 bits = 1 byte.
• 1 byte can represent 28 = 256 different values.

That’s enough for all English letters, numbers, and symbols! Images, music, and videos use thousands or
millions of bytes.

Binary in Everyday Life

• Text: Each letter or symbol is stored as a number code (for example, A = 65 in ASCII, or 01000001
in binary).

• Color: Each pixel on a screen is described by three numbers — the intensities of red, green, and
blue light. Typically, each intensity uses 1 byte (8 bits), so a single pixel uses 3 × 8 = 24 bits of
binary data. For example:

Red = 11111111, Green = 00000000, Blue = 00000000

makes a pure red pixel.
• Sound: A sound wave is recorded by measuring its height (amplitude) many times per second.
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Each measurement is converted into a binary number — usually 16 bits or more per sample — so
digital audio is just a very long sequence of binary numbers representing how the air vibrates over
time.

All digital information — text, pictures, and sound — is ultimately stored as long strings of 0s and 1s.

Arithmetic in Binary
Binary arithmetic is especially important — it’s what computers actually do! Every operation (addition, sub-
traction, multiplication) follows the same regrouping rules as base 10, but with only two digits: 0 and 1.

Addition. Add (1011)2 + (1101)2.

1 0 1 12
+ 1 1 0 12

1 1 0 0 02

Work from right to left:
• 1 + 1 = 102 → write 0, carry 1.
• Next: 1 + 0 + 1(carry) = 102 → write 0, carry 1.
• Next: 0 + 1 + 1(carry) = 102 → write 0, carry 1.
• Next: 1 + 1 + 1(carry) = 112 → write 1, carry 1 to a new place.
Result:

(1011)2 + (1101)2 = (11000)2.

Check: 1110 + 1310 = 2410, and indeed 2410 = (11000)2.

Multiplication. Multiply (101)2 × (11)2.

1 0 12
× 1 12

1 0 12
+ 1 0 1 02

1 1 1 12

Explanation: (101)2 = 510, (11)2 = 310, (1111)2 = 1510. Perfect!

Borrowing in Subtraction. Subtraction in base 2 works the same way: if you need to subtract 1 from 0,
borrow from the next place (which is worth 2).

(1000)2 − (1)2 = (111)2,

because 8− 1 = 7.

Key Patterns.
• 1 + 0 = 0 + 1 = 12 (write 1)
• 1 + 1 = 102 (write 0, carry 1)
• 1 + 1 + 1 = 112 (write 1, carry 1)
• 102 + 102 = 1002 (each power of two doubles neatly)
That’s all the rules a computer needs to perform any arithmetic operation!

10



Practice: Binary Numbers
1. Convert to base 10:

(1101)2, (10010)2, (111111)2.

2. Convert to base 2:
9, 14, 25, 42.

3. What happens when you count from 0 to 7 in binary? Try it on your fingers: each finger can represent
one binary digit!

Challenge
1. What is the binary representation of 100010?
2. Which binary number is twice as large as (1011)2?
3. What pattern do you notice between binary numbers and powers of 2?
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Homework
1. Write the following numbers using Egyptian symbols:

37, 205, 1,204, 6,315.

(Hint: use the correct number of strokes, heel bones, coils, and lotus flowers.)
2. Write the following Egyptian numerals as regular numbers:

22||| 4332| 7422
3. Write the following base-10 numbers in the Babylonian base-60 system (showing each “digit” as a num-

ber between 0 and 59):
73, 125, 3,600, 3,726.

(Hint: divide by 60 repeatedly.)
4. Express these Babylonian numbers in our base-10 system:

𒁹 𒌋𒐈, 𒈫 𒐊 𒌍, 𒌋𒌋𒐌 𒐏𒐊.

(Example: 𒃻 𒌋 𒌋𒌋𒁹 = (4, 10, 21)60 = 4× 602 + 10× 60 + 21 = 15,021.)
5. Write each in normal (Arabic) numbers:

XLII, CDXVI, MMXVIII, CMXC.

6. Write each in Roman numerals:
14, 70, 944, 2025.

7. Convert numbers between numeral systems.
(a) Convert to base 10:

101012, 24078, 7B1A12.

(b) Convert 5717910 to base 5 and to base 9.
8. Write the numbers 245 and 324 in the base-6 system (digits allowed: 0, 1, 2, 3, 4, 5).
9. Convert the following base-6 numbers to decimal:

(a) 2346

(b) 4036

10. Convert the following decimal numbers to binary:

9, 12, 24, 38, 45

11. Convert the following binary numbers to decimal:

101, 1001, 10110, 11011, 10101

12. Compute column-style (“by hand”) in the indicated bases.
(a) In binary:

1010112 + 1111102, 10112 × 10112.

(b) In ternary:
1221213 + 2120123, 11223 × 1203.
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(c) In base 5:
304235 + 211235, 32145 × 1425.

13. Perform the following binary operations (without converting to decimal):
(a) 1101012 + 1110112

(b) 101012 × 10112

(c) (101012 + 11012)× 101102

14. Perform the following in base 4:

(a) 3334 × 24

(b) 11114 − 2224

(c) 32314 − 13214

15. 100 children signed up for a math club: 24 boys and 21 girls. In which base system does the club
operate?

16. You have 15 water samples, exactly one contaminated. A test detects whether a mixture contains the
chemical. Can you find the bad sample using fewer than 15 tests?

17. Place 127 one-dollar bills into seven envelopes so any amount from 1 to 127 dollars can be paid without
opening the envelopes.

18. Robert thinks of a whole number between 1 and 1000. Julia may ask only yes/no questions (and Robert
is truthful). Can she find the number in 10 questions?

19. On the board remains a half-erased sum:
2 3 5

+ 1 6 4 2
4 2 4 2 3

Determine the base of this numeral system and reconstruct the missing digits.
*20. Divisibility rules in other bases.

(a) Formulate and prove a divisibility rule for 2 in the ternary system.
(b) Formulate and prove a rule for 7 in the octal system.
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