

Math 3 Homework 9

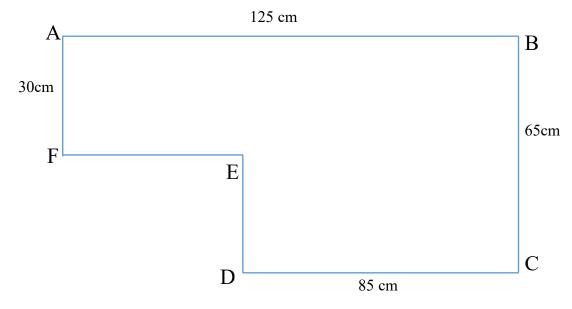
Compare the expressions without calculating its values. Use <, >, =

$$5 \times 6 - 5$$
 _____ $5 \times 5 + 5$ $48 + 20$ $4 \times 5 + 50$

$$7 \times 6 + 7$$
 _____ $6 \times 7 + 6$
 $24 + 32$ _____ $(32 - 24) \times 7$

Calculate: 20

4


$$20 \times 30 =$$
 $50 \times 100 =$

$$15 \times 100 = 25 \times 10 =$$

$$200 \times 2 = 40 \times 10 =$$

At the school's art exhibition 40 drawings were presented. Out of them 8 drawings were made in pencil, and the rest were made with paints. How many times more drawings are done with paints than with a pencil?

Find the perimeter of the following figure, if you know some of the sides:

5

Calculate:

- a) 9dm 1cm 3dm 9cm 2dm 7cm =
- b) 4dm 2cm + 5m 8dm 7m 6dm = _____

Draw a four-sided polygon that has right angles at the 2 bottom corners, an angle less than 90^{0} at the upper left corner, and an angle greater than 90^{0} in the upper right corner.

7

Calculate:

$$548 + 0 =$$

$$346 - 346 =$$

$$111 \times 0 =$$

$$20 \times 30 =$$

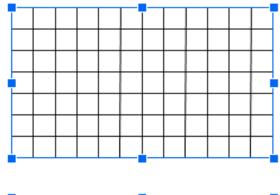
$$0 + 491 =$$

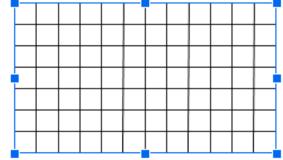
$$0 + 0 =$$

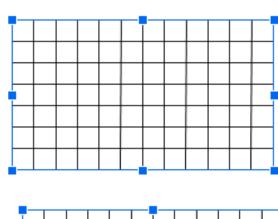
$$2 \times 0 =$$

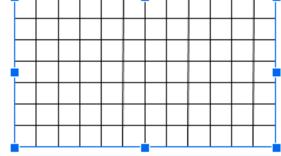
$$15 \times 100 =$$

$$864 - 0 =$$

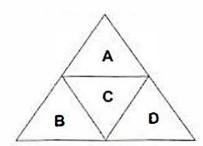

$$0 - 0 =$$

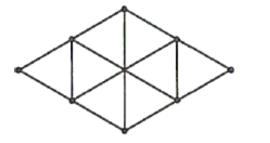

$$0 \times 39 =$$


$$200 \times 2 =$$

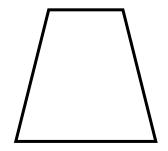

8

Perimeter of quadrilateral is 16 cm (assume that each cell is 1 cm). Draw several different quadrilaterals with the same perimeter -16 cm.




Method: Systematic counting

Example: How many triangles are there in the figure below?



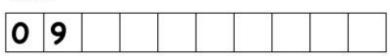
- Step 1. Count only triangles, which are formed by 1-unit triangle: A, B, C and D (total: 4)
- Step 2. Count only triangles, which are formed by 2-unit triangles: NONE
- Step 3. Count only triangles, which are formed by 3-units triangles: NONE
- Step 4. Count only triangles, which are formed by 4-units triangles: A+B+C+D (total: 1)
- Total: 4 + 0 + 0 + 1 = 5

9 How many triangles are there in the figure below (use a systematic counting method)?

Use a protractor to measure in degrees each of the angles in the shapes below:

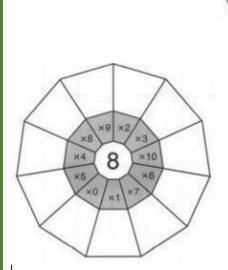
HW9

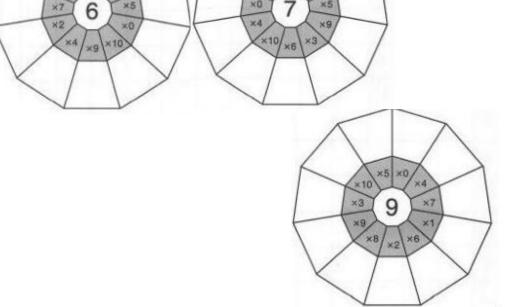
11


Multiplication. Angles. Perimeter.

Cora and Cecilia each use chalk to make their own number patterns on the sidewalk. Cora puts 0 in her first box and decides that she will add 3 every time to get the next number. Cecilia puts 0 in her first box and decides that she will add 9 every time to get the next number.

Cora:


Cecilia:



- a) Complete each girl's sidewalk pattern.
- b) How many times greater is Cecilia's number in the 5th box be than Cora's number in the 5th box?
- c) What about the numbers in the 8th box?
- d) The 10th box?
- e) What pattern do you notice in your answers for part b? Why do you think that pattern exists?
- f) If Cora and Cecilia kept their sidewalk patterns going, what number will be in Cora's box when Cecilia's corresponding box shows 108?

Complete the multiplication facts in the wheels below. Some answers have already been filled in.

12

The numbers 0 through 10 each appears only once in the shaded row and once in the shaded column. Fill in all missed numbers in the table.

×											
			9				0				
								16			
		25								30	
				4							16
									100		
1	49										
8			0								
					1						
				16							64
						81					

We know, that

$$9 + 9 + 9 + 9 = 4 \times 9$$
 and

$$4+4+4+4+4+4+4+4=8 \times 4$$
 and

$$3+3+3+5+5=3 \times 3+5 \times 2$$

Simplify:

a)
$$n + n + n + n + n =$$

b)
$$a + a + a + a + b + b + b =$$

c)
$$c + c + d + c + d + d =$$

We know, that 7 - 7 = 0, 11 - 11 = 0. Simplify:

$$n - n =$$

$$a - a =$$

$$c - d - c + d =$$

We know, that

$$6+5-5=6$$
 and $9+3-3=9$

Simplify:

$$n + 5 - 5 =$$

$$16 + n - n =$$

$$a + 10 + a =$$