

TEST REVIEW

Solve for x :

1

$$x + 6 = 89$$

$$87 - x = 37$$

Use the properties of addition to rewrite each addition fact (to make the calculation easier):

2

$$(66 + 48) + 34 =$$

$$(36 + 81) + 19 =$$

$$82 + 36 - 12 =$$

$77 - 18 + 23 =$

3

a) One side of a triangle is 3m 4dm 8cm, the second side is 2 dm, and the third side is 4m 2cm. What is the perimeter of the triangle in centimeters?

P =

b) A rectangle is 1m 25cm long and 3dm 5cm wide. What is the perimeter of the rectangle in centimeters?

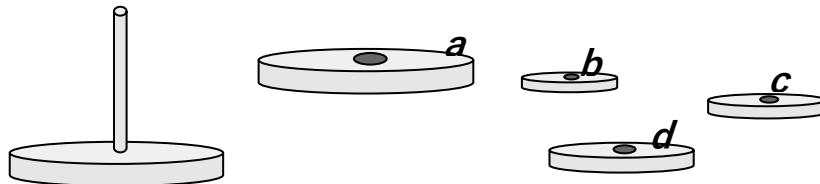
P =

4

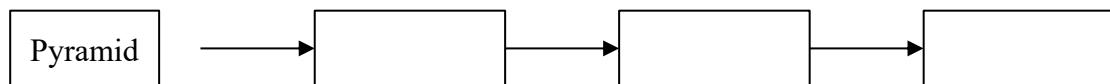
Write down the expressions and find their values:

a) subtract 39 from the sum of 47 and 18

b) add 29 to the difference between 80 and 27


New Material

An algorithm is a set of instructions designed to perform a specific task. This can be a simple process, such as multiplying two numbers, or a complex operation, such as playing a compressed video file.


Examples: Any kind of instructions from how to build paper airplanes to how to plant flowers, from rules on how to add numbers to programming. The internet, your Wi-Fi, smartphone, phone, computer, router, satellites, almost everything that has a computer inside uses these algorithms in one way or another to function.

4

a) Write an algorithm for putting the toy together so the size of the pieces gets smaller towards the top.

b) Write the algorithm for taking the toy apart.

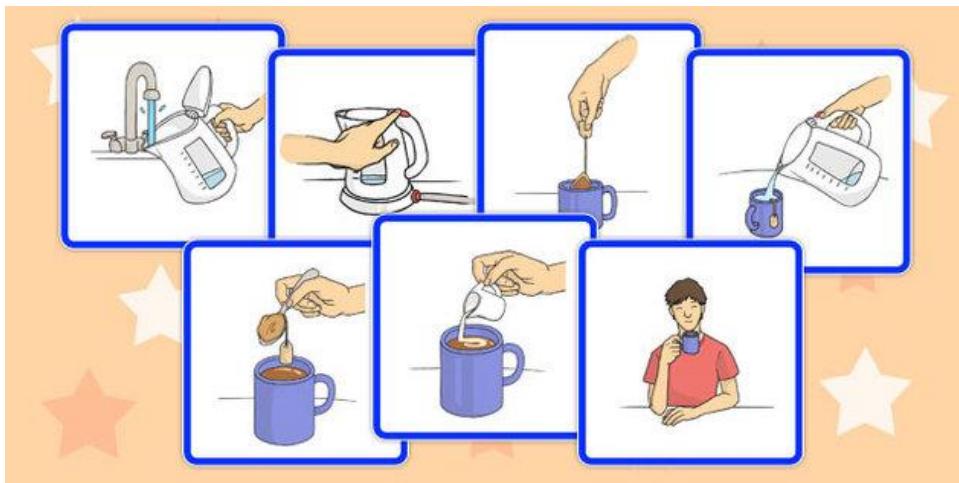
5

The following list represents the steps needed in order to mail a letter. Put the items on the list in the correct order.

- Put the letter in the mailbox _____
- Take a letter, an envelope and a stamp _____
- Stick the stamp _____
- Go outside to a mailbox _____
- Put a letter inside an envelope _____
- Write a letter _____
- Write address on the envelope _____
- Fold a letter _____

When the algorithm lists the operations from first to last, after performing the last one, we stop.

Such algorithms are called **linear**.


Some algorithms ask that when you reach the last instruction, you go back to the beginning. Such algorithms are called **cycling**.

Example: Algorithm for downhill skiing: every time you get down to the base, you go to a lift to get back up on the mountain. You repeat this cycle until it's time to go home.

6

Let's consider a tea making algorithm.

Write algorithms for making one cup of tea for one guest (**linear**) and for many guests (**cycling**).

a) Steps for making a cup of tea for one guest: _____

b) Steps for making a cup of tea each of the 8 guests: _____

7

Make a “Get Ready for the School” algorithm.

Make one for the in-person days and another one for a remote day.

Which steps of the algorithm could be switched? _____

Which steps could not be switched? _____

What steps can be removed? _____

What other steps can be added? _____

- Eat breakfast
- Wake up
- Get dressed
- Comb hair
- Brush teeth
- Prepare a backpack
- Make up a bed
- Do morning exercises
- Go to the bus stop

REVIEW

8

Solve the first row of problems. Using the answers and a mental math, solve the 2nd and 3rd rows.

$$328 + 70 - 95 =$$

$$200 - 78 - 86 =$$

$$689 - 314 + 180 =$$

$$328 + 72 - 95 =$$

$$200 - 69 - 86 =$$

$$690 - 314 + 179 =$$

$$328 + 73 - 96 =$$

$$300 - 69 - 86 =$$

$$690 - 313 + 179 =$$

Calculate:

9

$$\text{a)} 20 - 4 - 5 =$$

b) $20 - (4 + 5) =$

c) $20 - (4 + 5 + 6) =$

d) $20 - 4 - 5 - 6 =$

Why did you get the same result for a and b?

Why did you get the same result for c and d?

10

Math puzzles:

a) Alex thought of a number. When he added 45 to the number, then subtract 80, he got 915. Which number did Alex think of?

b) Emily thought of a number. When she subtracted 615 from it and then added 65, she got 200. What number did Emily think of?

c) Alan thought of a number, subtracted it from 770 and got 330. Which number did he think of?