Looking at the periodic table, we can tell several things about each element:

1. Atomic Number and Atomic Weight

Each element's atomic number (number of protons) and atomic weight are given.

2. Highest Energy Level

The period (horizontal row) corresponds to the highest occupied energy level (principal quantum number) of an element's electrons.

3. Valence Electrons and Reactivity

- The group (vertical column) often helps determine the number of electrons in the outer shell, known as *valence electrons*. These electrons participate in chemical reactions.
- o Elements in Group 1 have 1 valence electron, and those in Group 2 have 2.
- o For Groups 13-18, the valence electrons equal the group number minus 10.
- o Most elements in the d-block (transition metals) have a valency of 2.

4. Physical Characteristics

The element's placement (also indicates whether it's a metal, nonmetal, or metalloid.

5. For majority of atoms the electrons will occupy levels and orbitals as following:

1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d... Examples of electron configurations: $K - [Ar]4s^2$; $Sc - [Ar]4s^23d^2$;

Ga - [Ar] $4s^23d^{10}4p^1$; Cs - [Xe] $6s^1$; La - [Xe] $6s^24f^1$; Pb - [Xe] $6s^24f^{14}5d^{10}6p^2$; Rf - [Rn] $7s^25f^{14}6d^2$

Let's try to clarify the periodic table:

1. Energy Levels (Shells) and Rows in the Periodic Table:

 Each row (or period) in the periodic table corresponds to a new energy level (or shell) for electrons in atoms in their ground (stable) state.

2. **Row 1**:

- o In Row 1, the highest energy level is 1.
- o Energy level 1 has only one sub-level, called 1s.
- o Electrons occupy this 1s sub-level for the elements in Row 1.

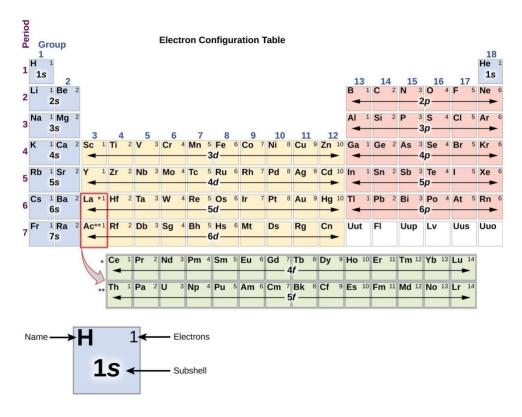
3. **Row 2**:

- o In Row 2, the highest energy level is 2.
- o Energy level 2 has two sub-levels: 2s and 2p.
- o Electrons fill up the 1s level first, and then occupy the 2s and 2p sub-levels.

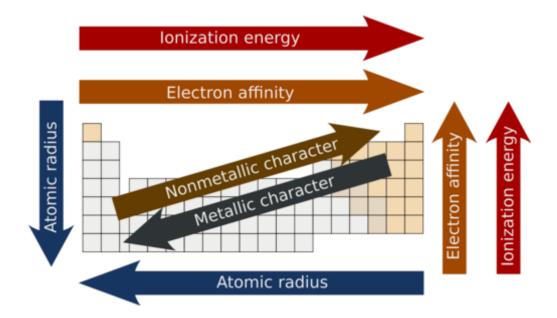
4. **Row 3**:

- o In Row 3, the highest energy level is 3.
- o Energy level 3 can have three sub-levels: 3s, 3p, and 3d.
- o However, the 3d sub-level is not filled immediately after 3p. The 4s sub-level is filled first, which is why the 3d sub-level appears in the 4th row.

5. **Row 4**:


- o In Row 4, the highest energy level is 4.
- o Energy level 4 can have four sub-levels: 4s, 4p, 4d, and 4f.
- o However, the 4f sub-level only begins to fill in the 6th row.

6. Understanding Principal Quantum Numbers and Orbitals:


- The energy levels are assigned numbers, known as principal quantum numbers (1,2,3,4,5,6,7).
- Each sub-level contains orbitals:
 - The s sub-level has 1 orbital.
 - The p sub-level has 3 orbitals.
 - The d sub-level has 5 orbitals.
 - The f sub-level has 7 orbitals.

7. Writing Electron Configurations:

- o When writing the **outer shell configuration** (like for Sulfur, S), we show the highest energy level's s and p orbitals, $3s^2 3p^4$.
- o For the **outer sub-shell configuration**, we only show the outermost sub-level, e.g., for Sulfur, it would be 3p⁴.

Properties of elements down a group and across a period.

Answer the following questions

- 1. Carbon (C) and Lead (Pb) belong to the same group in the periodic table. They have the same outer shell ns²np² (n=2 for carbon, n=6 for Pb). However, Carbon is nonmetal, but Pb is metal. How do you explain this difference?
 - 2. What can you tell about element with symbol N and element with symbol Bi?