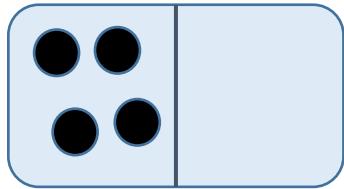


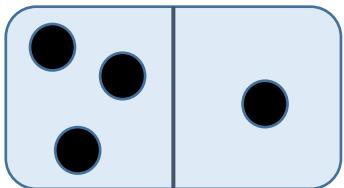
Second Law of Thermodynamics and Entropy

Alexei Tkachenko

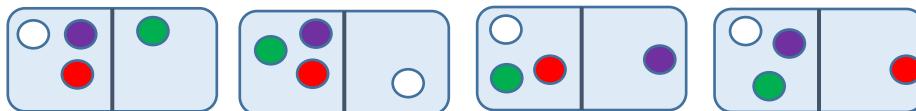
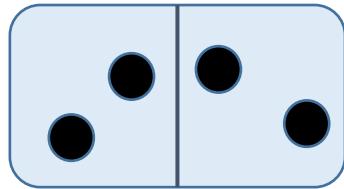
Let's count “microstates”



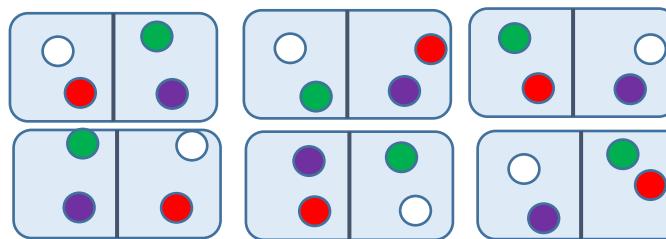
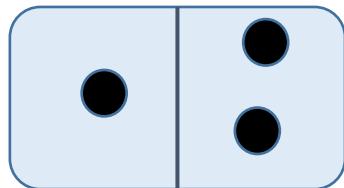
$W=1$



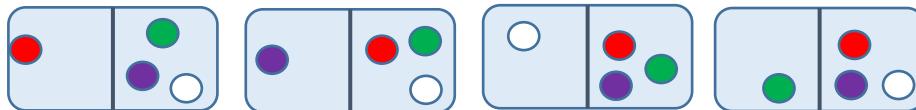
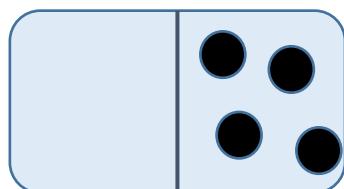
$W=2$



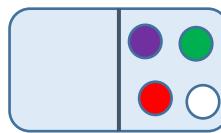
$W=6$



$W=4$

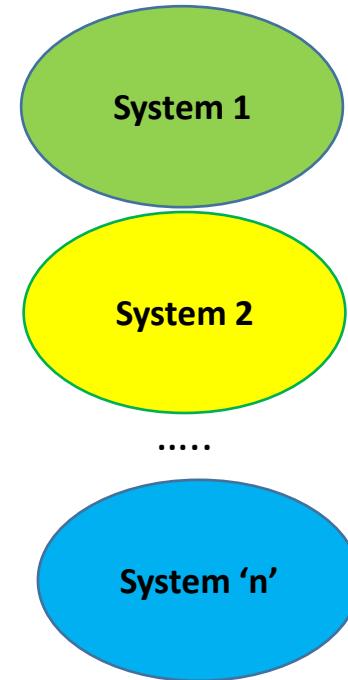


$W=1$



Can W be the entropy? No. Entropy must be additive

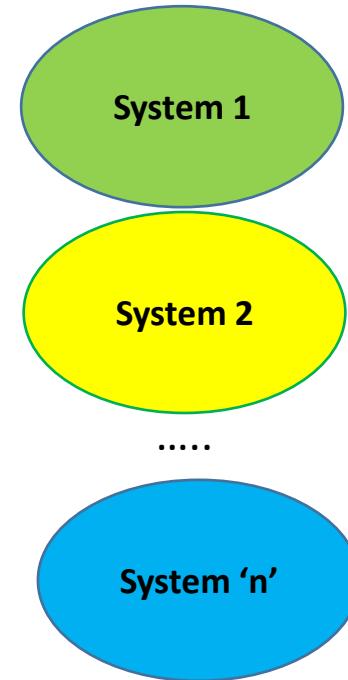
- Volume: $V_{total} = V_1 + V_2 + \dots + V_n$
- Energy: $E_{total} = E_1 + E_2 + \dots + E_n$
- Number of molecules: $N_{total} = N_1 + N_2 + \dots + N_n$
- Entropy: $S_{total} = S_1 + S_2 + \dots + S_n$
- Number of “microstates”: $W_{total} = W_1 \times W_2 \times \dots \times W_n$



Can W be the entropy? No. Entropy must be additive

- Volume: $V_{total} = V_1 + V_2 + \dots + V_n$
- Energy: $E_{total} = E_1 + E_2 + \dots + E_n$
- Number of molecules: $N_{total} = N_1 + N_2 + \dots + N_n$
- Entropy: $S_{total} = S_1 + S_2 + \dots + S_n$
- Number of “microstates”: $W_{total} = W_1 \times W_2 \times \dots \times W_n$

Let us use magic of **logarithm**: $y = a^x \rightarrow x = \log_a y$



$$y_1 \times y_2 \rightarrow x_1 + x_2$$

$$S = k \log W$$

$$k = 1.38 \cdot 10^{-23} \frac{J}{K} \text{ - Boltzmann constant}$$

Boltzmann Distribution

Let a system of interest has energy E
(say, an atom or molecule)

“Thermal Bath” at Temperature T

$$E$$

$$\Delta S = -\frac{E}{T}$$

Entropy “cost” of
taking away energy E

$$S = k \log W$$

Therefore , the probability of a state with Energy E is proportional to

$$Prob \sim e^{\Delta S} = e^{-\frac{E}{kT}}$$

Homework

Problem 1 An electron can be removed from the Helium atom, but that requires energy of **E=24.6** electron volts (eV), known as ionization energy. Use this information, and *Boltzmann probability formula*, $\text{Prob} \sim e^{-\frac{E}{kT}}$, to estimate the fraction of helium atoms that are ionized (i.e., missing one electron) at room temperature $T = 300 \text{ K}$.

Note that Boltzmann constant $k = 1.38 \cdot 10^{-23} \frac{\text{J}}{\text{K}}$, and $1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}$

Problem 2 Assume that morning fog consists of water droplets, each with radius $r = 1 \mu\text{m}$. The gravitational potential energy of a droplet at height h above the ground is

$$E = mgh$$

where $m = 4\pi\rho r^3/3$ is the mass of the droplet, $g = 10 \text{ m/s}^2$ is the acceleration due to gravity, and h is the height. Using the *Boltzmann probability formula*, estimate the characteristic height h over which the fog can extend above the ground at temperature $T = 300 \text{ K}$.