Oscillations

Many physical systems near equilibrium are describe by the following **Differential Equation**:

By using analogy with rotation, we have found in class that solution to this equation is an oscillatory motion with period T= $2\pi/\omega$:

$$T = \frac{1}{f} = \frac{2\pi}{\varpi}$$

Parameter	Formula	Units
Period	Т	S
Frequency	f=1/T	1/s=Hz (Hertz)
Angular frequency	ω=2πf=2π/T	1/s
Amplitude	А	varies

Example: Period of small oscillations of a pendulum

$$T = 2\pi \sqrt{\frac{L}{g}}$$
 L is length.

Homework

Problem 1

A mass **m** is attached to a spring with spring constant **k**. There is no other forces acting on the mass. Find the period **T** of its oscillation.

Problem 2

Write a formula that would fit the plot x(t), shown below (t in months):

Problem 3

- a) Design and builds a pendulum that has a period T=1s.
- b) Measure this period. Make several measurements, find the average and estimate the error in your experiment.
- c) Have this pendulum around during the time of our next class