
MATH 8B: HANDOUT 26 [MAY 11, 2025]
NUMBER THEORY 7: CHINESE REMAINDER THEOREM (CONTINUED).

FERMAT’S LITTLE THEOREM, WILSON’S THEOREM

SUMMARY OF PREVIOUS RESULTS

Inverses in modular arithmetic. Recall that we say that t is inverse of a mod n if at ≡ 1
mod n.

Theorem 1. A number a has an inverse mod n if and only if a is relatively prime with n, i.e.
gcd(a, n) = 1.

If a has an inverse mod n, then we can easily solve equations of the form

ax ≡ b mod n

Namely, just multiply both sides by inverse of a.

Chinese Remainder Theorem.

Theorem 2 (Chinese Remainder Theorem). Let a, b be relatively prime. Then, for any choice
of k, l, the following system of congruences:

x ≡ k mod a

x ≡ l mod b

has a unique solution mod ab, i.e. it has solutions and any two solutions differ by a multiple
of ab. In particular, there exists exactly one solution x such that 0 ≤ x < ab.

MORE ABOUT THE CHINESE REMAINDER THEOREM

Theorem 3. Let a, b, c be integers such that a is relatively prime to b and to c. Then a is
relatively prime to bc.

Proof. This follows immediately from the fundamental theorem of arithmetic (unique prime
factorization). There are no common primes dividing a and b, and similarly no common
primes dividing a and c. So there is no prime dividing both a and bc. □

Therefore, we can extend the Chinese remainder theorem to multiple moduli, as long as
they are relatively prime in pairs, as follows.

Theorem 4. Let a1, . . . , ar be relatively prime in pairs, i.e., (ai, aj) = 1 for each i ̸= j. Then
for any choice of k1, . . . , kr, the system of congruences

x ≡ k1 mod a1

. . .

x ≡ kr mod ar

has a unique solution mod a1a2 . . . ar.



We won’t go over the proof in detail, but it basically follows by mathematical induction.
(First, solve the first two mod a1a2, then combine that solution with the next congruence
to solve mod a1a2a3, and so on, at each step using the Chinese remainder theorem.)

Typically, we use this generalized form of the Chinese remainder theorem to solve con-
gruences modulo n = pe11 pe22 . . . perr by solving it modulo its prime power divisors peii , which
are all relatively prime in pairs.

Example: How many solutions are there to the congruence

x2 ≡ 1 mod 105

We can check that x2 ≡ 1 mod p has exactly 2 solutions, where p is an odd prime. So the
above congruence has 8 solutions, since 105 = 3 · 5 · 7.

FERMAT ’S LITTLE THEOREM

The following two results are frequently useful in doing number theory problems:

Theorem 5 (Fermat’s Little theorem). For any prime p and any number a not divisible by p,
we have ap−1 − 1 is divisible by p, i.e.

ap−1 ≡ 1 mod p.

This shows that remainders of ak mod p will be repeating periodically with period p− 1
(or smaller). Note that this only works for prime p.

Corollary 1. For any a (including those divisible by p) we have

ap ≡ a mod p

More generally, ak(p−1)+1 ≡ a mod p.
Note that the condition that p be prime is important: notice, for example, that 3(8−1)

mod 8 is congruent to 3, not 1.
There are many proofs of Fermat’s little theorem; one of them is given in problem 11

below. Here is another.

Proof. Consider the numbers 1, 2, . . . , p − 1 modulo p; these are all distinct. Now multiply
each of them by a, i.e. look at the numbers a, 2a, . . . , (p − 1)a. We can see that these are
all distinct modulo p, because if we had

ia ≡ ja mod p

then because a is relatively prime to p, we can cancel it from both sides of the congruence
to get i ≡ j mod p. Similarly, all these numbers ia mod p are also not 0 modulo p. So they
must be a permutation of the set {1, . . . , (p − 1)} modulo p. In particular, if we multiply
them together, we get

ap · (p− 1)! ≡ (p− 1)! mod p

Now because (p− 1)! is coprime to p, we can cancel it and get our theorem. □

Note that Fermat’s little theorem is distinct from Fermat’s big theorem (there are no
solutions to an + bn = cn with n > 2 and abc ̸= 0), which was not really a theorem that
Fermat proved ...

Now, you may wonder what the product (p − 1)! that showed up in the above proof is
mod p.



Theorem 6 (Wilson’s theorem). For any prime p, we have (p− 1)! ≡ −1 mod p.

Proof. It is enough to prove it for odd primes (why?). Now, for an odd prime p, look at the
set {1, . . . , p − 1} and pair up the numbers x mod p with x−1 mod p. The only numbers
for which x = x−1 are the solutions of x2 ≡ 1 mod p, namely ±1. Let’s call the pairs
a1, a

−1
1 , a2, a

−1
2 , . . . , ak, a

−1
k , where k = (p − 3)/2. So we can rearrange the product (p − 1)!

as
1 . . . (p− 1) ≡ 1 · (−1) · (a1 · a−1

1 ) . . . (ak · a−1
k ) ≡ 1 · (−1) ≡ −1 mod p.

□

CLASSWORK

Remember that for a natural number n, we define Euler’s totient function ϕ(n) to be the
number of elements of {1, . . . , n} which are coprime to n. We saw earlier that ϕ(p) = p− 1
for a prime p, and more generally ϕ(pe) = pe−1(p− 1). Show that ϕ(mn) = ϕ(m)ϕ(n) for m
and n relatively prime, as follows:

• If 1 ≤ a ≤ mn is relatively prime to mn, then it is relatively prime to m and n. So
considering its remainders mod m and mod n, we get two numbers b, c such that
1 ≤ b ≤ m and 1 ≤ c ≤ n and b is relatively prime to m, c is relatively prime to n.

• Conversely, if we have a b and c as above, one can find a unique a modulo mn (and
therefore a unique a satisfying 1 ≤ a ≤ mn) such that it is relatively prime to mn
and its remainders mod m and mod n are b and c respectively. (Why?)

Calculate ϕ(n) for n = pe11 . . . perr .

HOMEWORK

1. The theory of biorhythms suggests that one’s emotional and physical state is subject
to periodic changes: 23-day physical cycle and a 28-day emotional cycle. (This is
a highly dubious theory, but for this problem, let us accept it.) Assuming that for a
certain person January 1st, 2021 was the first day of both cycles, how many days
will it take for him to achieve top condition on both cycles (which happens on 6th
day of 23-day cycle and 7th day of 28-day cycle)? When will be the next time he
achieves top condition in both cycles? (Note: first day is day 1, not day 0!)

2. (a) Prove that for any integer x, we have x5 ≡ x mod 30
(b) Prove that if integers x, y, z are such that x + y + z is divisible by 30, then

x5 + y5 + z5 is also divisible by 30.
3. Find 52021 modulo 11.
4. Prove that 20193000 − 1 is divisible by 1001. [Hint: you can use Chinese remainder

theorem and equality 1001 = 7 ∗ 11 ∗ 13.]
5. How many solutions are there to

(a) x2 ≡ −1 mod 65?
(b) x2 ≡ −1 mod 69?

6. Show that for any integer a, the number a11 − a is a multiple of 66.
7. Show that the number 111 . . . 1 (16 ones) is divisible by 17. [Hint: can you prove

the same about number 999 . . . 9?]



8. Alice decided to encrypt a text by first replacing every letter by a number a between
1–26, and then replacing each such number a by b = a7 mod 31.

Show that then Bob can decrypt the message as follows: after receiving a number
b, he computes b13 mod 31 and this gives him the original number a.

9. Let p be a prime number.
(a) Show that for any k, 1 ≤ k ≤ p − 1, the binomial coefficient

(
p
k

)
is divisible by

p.
(b) Without using Fermat’s little theorem, deduce from the previous part and the

binomial theorem that for any a, b we have (a+ b)p ≡ ap + bp mod p.
(c) Prove that for any a, we have ap ≡ a mod p. [Hint: use induction on a and the

previous part.]
*10. Let p be a prime, and let 0 ≤ b ≤ a < p. Then show(

ap

bp

)
≡

(
a

b

)
mod p.


