
MATH 8B: HANDOUT 16 [FEB 2, 2024]
EUCLIDEAN GEOMETRY 6: CIRCLES

CIRCLES

Definition. A circle with center O and radius r > 0 is the set of all points P in the plane
such that OP = r.

Traditionally, one denotes circles by Greek letters: λ, ω . . . .
Given a circle λ with center O,

• A radius is any line segment from O to a point A on λ,
• A chord is any line segment between distinct points A, B on λ,
• A diameter is a chord that passes through O,
• A line is tangent if it intersects the circle at one point, and is said to be the tangent
through that point.

• Two circles are tangent if they intersect at exactly one point.

Theorem 21. Let A be a point on circle λ centered at O, and m a line through A. Then m is
tangent to λ if and only if m ⊥ OA. Moreover, there is exactly one tangent to λ at A.

Proof. First we prove (m is tangent to λ) =⇒ (m ⊥ OA). Suppose m is tangent to λ at
A but not perpendicular to OA. Let OB be the perpendicular to m through O, with B on
m. Construct point C on m such that BA = BC; then we have that △OBA ∼= △OBC by
SAS, using OB = OB, ∠OBA = ∠OBC = 90◦, and BA = BC. Therefore OC = OA and
hence C is on λ. But this means that m intersects λ at two points, which is a contradiction.
Now we prove (m ⊥ OA) =⇒ (m is tangent to λ). Suppose m passes through A on λ
such that m ⊥ OA. If m also passed through B on λ, then △AOB would be an isosceles
triangle since AO, BO are radii of λ. Therefore ∠ABO = ∠BAO = 90◦, i.e. △AOB is a
triangle with two right angles, which is a contradiction. □

Notice that, given point O and line m, the perpendicular OA from O to m (with A on
m) is the shortest distance from O to m, therefore the locus of points of distance exactly
OA from O should line entirely on one side of m. This is essentially the idea of the above
proof.

Theorem 22. Let AB be a chord of circle λ with center O. Then O lies on the perpendicular
bisector of AB. Moreover, if C is on AB, then C bisects AB if and only if OC ⊥ AB.

Proof. Let m be the perpendicular bisector of AB. The center O of λ is equidistant from A,
B by the definition of a circle, therefore O must be on m. Let m intersect AB at D. We
then have that D is the midpoint of AB and also the foot of the perpendicular from O to
AB (that is, OD ⊥ AB).

Then if C bisects AB, C = D since D is the midpoint of AB, and it follows that OC =
OD ⊥ AB. Conversely, if C is on AB with OC ⊥ AB, then because there is only one
perpendicular to AB through O, we must have that the lines OC and OD coincide, and
therefore their intersection points with AB must be the same: C = D. Therefore C is the
midpoint of AB. □



Theorem 23. Let ω1, ω2 be circles with centers at points O1,
O2 that intersect at points A, B. Then AB ⊥ O1O2.

Proof. Let l be the perpendicular bisector of AB. By the
previous theorem, l contains both centers: O1 ∈ l, O2 ∈ l.
Thus, l = O1O2, so O1O2 is the perpendicaulr bisector of
AB; in particular, they are perpendicular. □

O1 O2

A

B

C

Theorem 24. (Relative positions of lines and circles) Let λ be a circle of radius r with center
at O and let l be a line. Let d be the distance from O to l, i.e. the length of the perpendicular
OP from O to l. Then:

• If d > r, then λ and l do not intersect.
• If d = r, then λ intersects l at exactly one point P , the base of the perpendicular from
O to l. In this case, we say that l is tangent to λ at P .

• If d < r, then λ intersects l at two distinct points.

Proof. The first two parts easily follow from the fact that a perpendicular is the (shortest)
distance from a point to a line. In the last part, it is easy to show that λ can not intersect l
at more than 2 points. It is also easy to show that if λ and l intersect in at least one point,
then they have two points of intersection. Proving that there is a point of intersection is
rather subtle: it requires some notion of continuity of the real numbers and is tantamount
to an additional postulate (for example, saying that if l contains a point inside the circle λ,
then they must have a point of intersection). We will not go into this discussion here. □

Note that it follows from the definition that a tangent line is perpendicular to the radius
OP at point of tangency. Converse is also true.

Theorem 25. Let ω1, ω2 be circles that are both tangent to line m at point A. Then these two
circles have only one common point, A. Such circles are called tangent.

Proof. By Theorem 21, radiuses O1A and O2A are both perpendicular to m at A; since
there can only be one perpendicular line to m at given point, it means that O1, O2, and A
are on the same line, and that m is perpendicular to O1O2 at A.

Now, suppose that ω1, ω2 intersect at point B ̸= A. Then by the previous theorem, AB ⊥
O1O2, therefore both AB and m are perpendicular to O1O2 through A. We must therefore
have that B is on m, but m is tangent to ω1 through A, thus has only one intersection with
ω1, which is a contradiction. □

ARCS AND ANGLES

Consider a circle λ with center O, and an angle formed by two rays from O. Then these
two rays intersect the circle at points A, B, and the portion of the circle inside this angle
is called the arc subtended by ∠AOB.
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Theorem 26. Let A, B, C be on circle λ with center O. Then
∠ACB = 1

2
∠AOB. The angle ∠ACB is said to be inscribed in λ.

Proof. There are actually a few cases to consider here, since C
may be positioned such that O is inside, outside, or on the an-
gle ∠ACB. We will prove the first case here, which is pictured
on the left.
Case 1. Draw in segment OC. Denote m∠A = x, m∠B = y.
Since △AOC is isosceles, m∠AC) = x; similarly m∠BCO = y,
so m∠ACB = x + y, and m∠AOC = 180◦ − 2x, m∠BOC =
180◦ − 2y. Therefore, m∠AOC +m∠BOC = 360◦ − 2(x + y).
This implies m∠AOB = 2(x+ y). □

As a result of Theorem 26, we get that any triangle △ABC on λ where AB is a diameter
must be a right triangle, since the angle ∠ACB has half the measure of angle ∠AOB,
which is 180◦.
The idea captured by the concept of an arc and Theorem 26 is that there is a fundamental
relationship between angles and arcs of circles, and that the angle 360◦ can be thought of
as a full circle around a point.

HOMEWORK

1. Prove that, given a segment AB, there is a unique circle with diameter AB.

2. Given lines
←→
AB∥

←→
CD such that AD, BC intersect at E and AE = ED, prove that

BE = EC.
3. Prove that if a diameter of circle λ is a radius of circle ω, then λ, ω are tangent.
4. Complete the proof of Theorem 26 by proving the cases where O is not inside the

angle ∠ACB. [Hint: for one of the cases, you may need to write ∠ACB as the
difference of two angles.]

5. Prove the converse of Theorem 26: namely, if λ is a circle centered at O and A, B,
are on λ, and there is a point C such that m∠ACB = 1

2
m∠AOB, then C lies on λ.

[Hint: we need to prove that OC = OA; consider using a proof by contradiction]
6. Let A, B be on circle λ centered at O and m the tangent to λ at A. Let C be on

m such that C is on the same side of
←→
OA as B. Prove that m∠BAC = 1

2
m∠BOC.

[Hint: extend OA to intersect λ at point D so that AD is a diameter of λ. What arc
does ∠DAB subtend?]

7. Prove that, given two distinct points A, B on circle λ which are on the same side of
diameter CD of λ, that CB ̸= CA.

8. Let AB, CD both have midpoint E and let F , G be points such that BECF and
AEDG are parallelograms. Prove that E is the midpoint of FG.
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