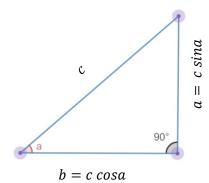
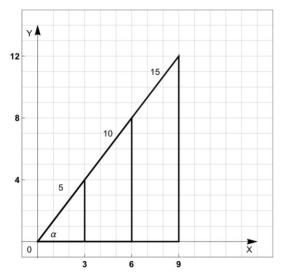
MATH 7: CLASSWORK 21 Invariants, and asymptotes April 27, 2025

1. Definition for sin and cos of an angle


As we discussed, for any angle α , we can find invarians : (sine) $sin\alpha$ and (cosine) $cos\alpha$

In general, for a right-angle triangle with hypothenuse not equal to 1, the *sina* and *cosa* of the angle are defined as:

 $sina = \frac{\text{opposite side}}{\text{hypothenuse}}$


 $cosa = \frac{adjacent side}{hypothenuse}$

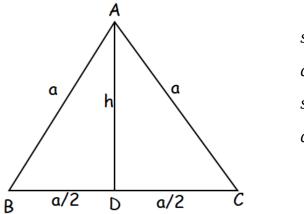
This is because the definitions on *sin* and *cos* do not really depend on size of the triangle, but only the angle itself. Since any two right triangles with the same angles are similar, it shows that if we have a right triangle with angle α and hypotenuse **c**, then the sides will be *c sin* α and *c cos* α :

$$sina = rac{ ext{opposite side}}{ ext{hypothenuse}} = rac{c sina}{c}$$

 $cosa = rac{ ext{adjacent side}}{ ext{hypothenuse}} = rac{c cosa}{c}$

Example: Consider the angle a in the following triangles:

 $sina = \frac{\text{opposite side}}{\text{hypothenuse}} = \frac{4}{5} = \frac{8}{10} = \frac{12}{15}$


$$cosa = \frac{adjacent side}{hypothenuse} = \frac{3}{5} = \frac{6}{10} = \frac{9}{15}$$

2. Table with values for trigonometric functions

Function	Notation	Definition	0 ⁰	30 ⁰	45 ⁰	60 ⁰	90 ⁰
sine	sin(a)	opposite side hypothenuse					
cosine	cos(a)	adjacent side hypothenuse					

Problems

1. As we discussed in class, please find:

 $sin(\angle B),$ $cos(\angle B),$ $sin(\angle BAD),$ $cos(\angle BAD)$

- 2. Which one is greater?
 - a. 0 or $\sin 0^{\circ}$
 - b. 1 or sin 30⁰
 - c. $\sin 45^{\circ} \text{ or } \cos 45^{\circ}$
 - d. $\cos 60^{\circ}$ or $\sin 30^{\circ}$
- 3. Plot these functions, clearly define asymptotes:

a.
$$y = \frac{1}{x+3} - 3$$

b. $y = \frac{1}{x+3} - 3$

b.
$$y = \frac{1}{3-x} - 3$$

c.
$$y = x - \frac{1}{x}$$