MATH 10 ASSIGNMENT 24: GROUPS

APRIL 27, 2025

Definition 1. A group is a set G with a binary (i.e. requiring two arguments) operation * and a special element e such that

- **1.** Associativity: (a * b) * c = a * (b * c)
- **2.** Unit: for any $g \in G$, we have e * g = g * e = g
- **3.** Inverses: for any $q \in G$, there exists an element $h \in G$ such that q * h = h * q = e

The operation in groups is also commonly written as a dot (e.g. $g \cdot h$) or without any sign at all (e.g. gh). The unit element is sometimes denoted just 1, and the inverse of g by g^{-1} (see problem 3 below)

A typical example of a group is the group of all permutations of the set $\{1, \ldots, n\}$. It is commonly denoted S_n and called the *symmetric group*. More examples are given in problem 2 below.

- 1. Let $x, y \in S_9$ be cycles: $x = (1 \ 2 \ 3 \ 4 \ 5), y = (5 \ 6 \ 7 \ 8 \ 9)$. Compute $xyx^{-1}y^{-1}$ (this is sometimes called the *commutator* of x, y).
- **2.** Show that the following are groups:
 - (a) Set \mathbb{Z} with the operation of addition
 - (b) Set \mathbb{R} with the operation of addition
 - (c) Set $\mathbb{R}^{\times} = \mathbb{R} \{0\}$ with the operation of multiplication
 - (d) Set A_n of all even permutations (it is called the alternating group).
 - (e) Set of all vectors in 3 dimensional space, with the operation of addition.
 - (f) Set \mathbb{Z}_n of all integers modulo n with the operation of addition modulo n.
 - (g) Set O_3 of all rigid motions (i.e., transformations preserving distances) of the 3-dimensional space, with the operation of composition.
- **3.** Prove that in a group, each element g has a *unique* inverse: there is exactly one h such that gh = hg = e. (Note that the definition of the group only requires that such an h exists and says nothing about uniqueness). Hint: if h_1, h_2 are different inverses, what is h_1gh_2 ?
- **4.** Prove that in any group, $(xy)^{-1} = y^{-1}x^{-1}$
- 5. Consider the set D_n of all symmetries of a regular n-gon (a symmetry is a transformation of the plane that preserves distances and which sends the regular n-gon into itself). Prove that D_n is a group with respect to composition. How many elements are there in D_n ?
- **6.** Consider the set R of all rotations of a regular tetrahedron.
 - (a) How many elements are there in R?
 - (b) Prove that R is a group.
 - *(c) Every element of R permutes vertices of the tetrahedron and thus determines an element of S_4 . Show that this allows one to identify R with the group A_4 of even permutations of 4 elements.