Lesson № 2

Multiplication and Division

1 Divide the points on the plot into groups of five.

Count the points on the drawing.

How many points are totally on the drawing? ______ **30 : 5 = ____**

Grouping points is division.

 Counting points divided into groups is multiplication

 2
 Simplify expressions:

$$4+4+4+4+4+4= x$$
 $4+4+\dots+4= x$
 $a+a+a+a+a= x$
 $a+a+\dots+a= x$
 $a+a+a+a+a= x$
 $a+a+\dots+a= x$
 12 times
 $a+a+\dots+a= x$
 b times
 z times

Solve the word problems:

3

a). A factory produced **8** gift boxes on the first day. Next day it produced **10** gift boxes. How many gift boxes did it produce in two days?

b). A factory packs **8** gift boxes each day. How many gift boxes will it pack in **10** days?

c). A factory packs *x* gift baskets each day. How many gift boxes will it pack in *q* days?

Order of operations with multiplication and division.

1. Operations of multiplication and division precede the operations of addition and subtraction.

2. Operations of multiplication and division are performed in the order they are written.

3. To change this order of operations parenthesis are used

4

Indicate the order of operations in the following expressions. Evaluate when possible.

 $a + x \cdot 12 + q$ $m \times n - p : z$ 12 + 8 : 4 - 2 =

 $(a + x) \cdot 12 + q$ $m \times (n - p) : z$ (12 + 8) : 4 - 2 =

 $a + x \cdot (12 + q)$ $(m \times n - p) : z$ 12 + 8 : (4 - 2) =

2

Square centimeter.

6

A square centimeter is the area of a square $1 \text{ cm} \times 1 \text{ cm}$

Measure the areas of the following shapes in square centimeters and in cells.

a = ____ cells

b = _____ cells

Finding areas of Rectangles and Commutative property of multiplication:

7 A rectangle is 4 cm long and 3 cm wide. Find the area of the rectangle in square centimeters.

Look at the two ways to solve the problem

Method I: $S = 4 \text{ cm}^2 \times 3 = ___ \text{ cm}^2$

8

Method II: S = $3 \text{ cm}^2 \times 4 = ___ \text{ cm}^2$

The area of a rectangle equals the product of its sides:

 $S = a \times b = b \times a$

Measure the sides of the rectangles in centimeters and calculate their areas:

a = cm $S = cm^2$	b = cm
a = cm	b = cm

10 cm = 1 dm 12 Convert: 1 cm^2 $5 \text{ dm}^2 = ___ \text{cm}^2$ $3 dm^2 = cm^2$ $300 \text{ cm}^2 = ___ \text{dm}^2$ 1 dm = 10 cm $2 \text{ dm}^2 = \text{cm}^2$ $1 \text{ dm}^2 = 100 \text{ cm}^2$ 13 Calculate: $2 \text{ cm}^2 + 5 \text{ cm}^2 = \text{cm}^2$ $3 dm^2 - 2 dm^2 = dm^2$ $15 \text{ cm}^2 - 7 \text{ cm}^2 = \text{cm}^2$ $11 \text{ dm}^2 + 7 \text{ dm}^2 = \text{dm}^2$ $500 \text{ cm}^2 + 1 \text{ dm}^2 = ___ \text{ cm}^2$ $500 \text{ cm}^2 + 1 \text{ dm}^2 = \text{ dm}^2$

Square Centimeter and Square Decimeter

Additional Problems:

