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Homework 5 

 

Electric potential. Superposition. 

 

Eletric potential. 
 

The potential energy where of two charges separated by a distance r is 
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Let us keep one of the charges, say, q1 fixed and change the charge q2. Since there is a product of the 

charge magnitudes in the numerator of formula (1), the potential energy will increase or decrease 

proportionally to the charge magnitude of q2. We can now calculate the potential energy per unit 

charge. For this we will divide the potential energy of the interacting charges q1 and q2 by the magnitude 

of q2: 
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We can imagine that each point of space around the charge q1 can be characterized by the potential 

energy of a positive unit charge in this point. The electrostatic potential energy of a positive unit charge 

in a certain point is called “electric potential” in this point. The electric potential is a scalar. The electric 

potential φ created by the point charge Q is:  

 

𝝋 = 𝒌
𝑸

𝒓
     (3) 

There are 2 important issues. First: if the charge q is negative, the potential will be negative as well. 

Second: potential, created by a point charge is “spherically symmetrical”. This means that only the 

distance from the charge to the point where we are measuring potential matters (rather than the exact 

position of the point). 

 

The formula (3) means that a unit positive point charge placed at the distance r from the charge q will 

have potential energy φ. If we will place an arbitrary charge Q at the distance r (instead of a unit charge) 

then the potential energy of the charge Q can be calculated as: 

 

𝑷 = 𝒌
𝑸

𝒓
∙ 𝒒 = 𝝋 ∙ 𝒒  (4) 

As we can see from the formula (3) the potential created by a point charge depends on the distance to 

the point charge. Difference of potentials taken in points A and B equals to the difference of potential 

energy of a unit positive charge in these points. Now let us look at Figure 1. Let us assume that the 

position of positive charge Q is fixed, and another small object having charge q is placed in a point 

separated from Q with a distance R1. Charge q is repelled by charge Q, and, being released, starts 

moving from charge Q. When it reaches point B, separated from Q with a distance R2, it has nonzero 
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kinetic energy, but its potential energy is less now. The gain in kinetic energy is equal to the loss of the 

potential one due to energy conservation. 

 
Figure 1. Work of the electric field. dr is a displacement in the direction AB, F(r) is the Coulomb 

force which depends on r. 

 

But, the gain in kinetic energy is equal to the work WAB, done by electrostatic force on charge q. 

Typically, by “change” we mean “final value minus initial value” Change in potential energy then will 

be negative since its final valuer at R2 is less than its initial value at R1 (since R2 is larger than R1). Let 

us introduce a slightly different parameter: potential energy in the initial point minus potential energy 

in the final point. We have: 

 

𝑾𝑨𝑩 = 𝑷𝑨 − 𝑷𝑩 = 𝒒𝝋𝑨 − 𝒒𝝋𝑩 = 𝒒(𝝋𝑨 − 𝝋𝑩) = 𝒒𝑼𝑨𝑩        (5) 

 

Here PA, PB –electrostatic potential energies in points A and B; 𝝋𝑨, 𝝋𝑩 – the electrostatic potentials, 

UAB =𝝋𝑨 − 𝝋𝑩 is the potential difference which is also called “voltage drop between points A and B”, 

or just “voltage between points A and B”. 

 We assumed that the charge was moved from point A to point B along a straight line. We may 

ask: “may be there is an optimal path, so if we use this path the loss of potential energy when the charge 

moved from one point to the other will be minimal”. This does not work for electrostatic field. The 

potential energy (or just potential) difference between two points does not depend on the path we 

choose!  
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Figure 2. Potential energy difference between points A and B does not depend on the path geometry. 

 

We can choose the green path (Figure 2) or the blue pass the potential energy difference will be the 

same. Let us assume for a moment that the change in potential energy depends on the path you choose 

and for the blue path it is, say, higher that for the green path. Then we could choose green path to go 

from A to B and blue pass to go from B to A and return to the same point A having higher potential 

energy than we initially had in this point. But this does not agree with the expression for electrostatic 

potential energy we obtained earlier. According to this expression if the distance is the same so is the 

potential energy. The electrostatic potential and voltage are measured in Volts.   

1Volt=1Joule/1Coulomb. The voltage unit is named after Italian physicist Alessandro Volta: 

 
Alessandro Volta 

1745-1827 

 

Superposition principle. 
 

The beauty and convenience of the concept of electric potential is that using the electrical potential we 

can easily calculate the potential energy of a charged object in the electric field created by arbitrary 

configuration of other charged objects.  

Let us consider the following example. 
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Figure 1. The red arrows show the electrostatic forces applied to the negative charge. 

Given: 

 Eight point charges q=2C each are placed in the corners (vertices) of a cube (see Figure 1 above). The 

positions of the positive charges are fixed. The distance between the center and a corner of the cube is 

1m. A negative charge of Q=3C is placed in the center of the cube.  

Find electrostatic potential energy of the negative charge. 

Solution: 

As we remember, a possible way to calculate the electrostatic potential energy of a charge in a certain 

point is to calculate the electrostatic potential in this point and multiply it by the charge. Let us calculate 

the electrostatic potential in the center of the cube (black point in the Figure 2. 
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Figure 2. 

At a first glance the problem looks difficult. But, in fact, it is not. To solve it, we will use the principle 

of superposition. According to this principle, we can calculate the potentials created in the center of 

the cube by each of the positive charges separately. After that we will just add these potentials together.  

a) Let us pick just one positive charge (Figure 3). 

 

Figure 3. 

Then let us calculate the electrostatic potential created by this charge at the center of the cube. 

𝝋𝒐𝒏𝒆 𝒄𝒉𝒂𝒓𝒈𝒆 = 𝒌
𝒒

𝑳
≈ 8.9 ∙ 109 (

𝑁 ∙ 𝑚2

𝐶2
) ∙

2(𝐶)

1(𝑚)
≈ 1.78 ∙ 108(𝑉)  

b) Now, we have to take another positive charge, calculate its contribution to the potential etc. 

But, there is a simpler way. We can use the symmetry principle which we discussed earlier. 

As long as all the corners of the cube occupy equivalent positions with respect to the center 

of the cube, there is no reason to prefer one corner to another. Thus, the contributions of the 

equal positive charges placed in the corners of the cube to the potential in the cube’s center 

should be equal. So we can just multiply the contribution of one positive charge by 8 – the 

number of corners. 

𝝋𝒕𝒐𝒕𝒂𝒍 = 𝝋𝒐𝒏𝒆 𝒄𝒉𝒂𝒓𝒈𝒆 ∙ 8 = 1.78 ∙ 108(𝑉) ∙ 8

≈ 1.42 ∙ 107 (𝑉) 
 

c) Now we can easily calculate the potential energy P of the charge Q=-3C placed in the center 

of the cube: 

 

 

 

q=2C 

L=1m 
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𝑷 = 𝝋𝒕𝒐𝒕𝒂𝒍 ∙ 𝑸 = 1.42 ∙ 107 (𝑉) ∙ (−3)(𝐶) = −4.26 ∙ 107𝐽 

 What happens if the charges at the “bottom” vertices are negative (Figure 3)? 

 
Figure 3. 

 

Now, as we can clearly see the negative charge in the center will be pushed up, since it is 

repelled from the bottom and attracted to the top. So, if we let it go, it will be accelerated and, 

when reaches, say, the middle of the top facet it will have some kinetic energy. Based on this, 

we can conclude that our charge has some potential energy while placed in the center of the 

cube. But let us calculate this potential energy using our recipe: calculate the potential and 

multiply it by the charge (-3C). The contribution of each of the top positive charges we have 

calculated earlier: 1.78x108 V. We have to multiply it by 4, since there are 4 charges on the top 

vertices). The contribution of each of the bottom negative charges is negative: -1.78x108 V. We 

have to multiply it by 4 as well and add the positive contribution of the top charges. The result 

is zero! And it is correct! But if we multiply -3C by zero to find the potential energy we will get 

zero. No potential energy!  

 To resolve this paradox let us remember that not the absolute potential energy, but the 

change of potential energy is physically meaningful. Potential energy in the center is zero, but 

it is not minimal potential energy. If you will calculate the potential energy of our charge in the 

center of the upper facet, you will have a negative value. So, change of the potential energy will 

be positive and will be equal to the kinetic energy acquired by our charge. 

 

Problems: 

1. An object with a charge of 0.01C being accelerated by electrostatic force moves from point A 

to point B and gains kinetic energy of 6J. Find the potential difference between points A and B.  

 

2. There is a point charge of -1C (see picture below). The distance between the charge and the 

point A is 100m, the distance between the points A and B is also 100m. Find the potential 

difference between points A and B.  
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3. Find potential in the center of a uniformly charged thin sphere having a total charge of 1C and 

radius 1m. 

 

 

 

 
A 

B 


