Math 7: Handout 9 Binomial coefficients formula. Binomial probabilities

Binomial coefficients. Binomial coefficients provide answers to the following questions:

 $\binom{n}{k}$ = the number of paths on the chessboard going k units up and n-k to the right

= rhe number of words that can be written using k ones and n - k zeroes

= the number of ways to choose k items out of n (order doesn't matter)

Formula for binomial coefficients. It turns out that there is an explicit formula for $\binom{n}{k}$:

$$\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{k!} = \frac{n!}{(n-k)!k!}$$

Compare it with the number of ways of choosing k items out of n when the order matters:

$$_{n}P_{k} = n(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!}$$

For example, there are $5 \cdot 4 = 20$ ways to choose to items out of 5 if the order matters, and $\frac{5 \cdot 4}{2} = 10$ if the order doesn't matter. In general,

$$\left(\begin{array}{c} \text{number of ways to choose} \\ k \text{ items out of } n, \\ \text{order matters} \end{array}\right) = \left(\begin{array}{c} \text{number of ways to choose} \\ k \text{ items out of } n, \\ \text{order does not matter} \end{array}\right) \cdot \left(\begin{array}{c} \text{number of ways to reorder} \\ k \text{ items among themselves} \end{array}\right)$$

Binomial Probabilities. These numbers are also useful in calculating probabilities. Imagine that we have some event that happens with probability p ("success") and does not happen with probability q = 1 - p ("failure"). Then the probability of getting k successes in n trials is

$$P(k \text{ successes in } n \text{ trials }) = \binom{n}{k} p^k q^{n-k}, \text{ where }$$

- *p* probability of success in one try;
- q = 1 p probability of failure in one try;
- *n* number of trials;
- *k* number of successes;
- n-k number of failures.

Example: Move a figure from lower left corner 8 times one square up or to the right with equal probability. What are the probabilities to end up in any square of the board?

Solution: Total number of steps is n=8, and you make $k_{\uparrow}+k_{\rightarrow}=8$ steps with probability p=1/2 up and q=1/2 down. **Example:** You roll a die 100 times. What is the probability of getting a 6 exactly 20 times?

Solution: Here we have: n = 100, k = 20, p = 1/6, q = 5/6. Then

$$P = \begin{pmatrix} 100\\20 \end{pmatrix} \cdot \left(\frac{1}{6}\right)^{20} \left(\frac{5}{6}\right)^{80}$$

Example 3: If we draw 3 cards out of the deck, what are the chances that

- They will all be all spades
- They will be all aces
- That they will be ace of spades, queen of spades, and king of spades, in this order
- That they will be queen of spades, ace of spades, and king of spades, in this order
- That they will be ace, queen, and king of spades, in some order

In problems on combinatorics and probability, you can give your answer as a binomial coefficient without calculating it. The answer presented in this way explains your solution and shows your thinking.

HOMEWORK

- **1.** There are 15 players in a soccer club.
 - (a) How many ways does the coach have to select 11 players for a match?
 - (b) How many ways does the coach have to select 10 players and one goalkeeper?
- **2.** In one a lottery "Sweet Million" run by the New York State, 6 numbers are chosen randomly from 1–40. If you guess all 6 correctly (order does not matter), you win \$1,000,000. [Let's ignore smaller prizes for guessing 5 out of 6, etc.]
 - (a) How many ways are there to choose 6 numbers out of 40?
 - (b) What are your chances of winning?
 - (c) How much money does New York State make for each ticket sold (on average), if a lottery ticket cost \$1?
- **3.** In poker, players are drawing "hands" (combinations of 5 cards) from the 52-card deck (4 suits, 13 cards in each).
 - (a) How many possible hands are there?
 - (b) What are your chances of drawing a hand with all spades?
 - (c) What are your chances of drawing a with 4 queens? [Hint: how many such hands are there?]
 - (d) What are your chances of drawing a royal flush (Ace, King, Queen, Jack, 10 of the same suit)? [Hint: what are your chances of drawing a royal flush in a given suit, say spades?]
- **4.** A hunter is shooting ducks. Probability of hitting a duck with one shot is p = 1/3. The hunter makes 5 shots. What is the probability that
 - (a) What is the probability that she misses all five?
 - (b) What is the probability that she will hit a duck at least once? Will this probability double if she makes 10 shots? (You can use the calculator for computing the answers)
 - (c) What is the probability that out of 5 shots, she will hit exactly once? Will this probability double is she makes 10 shots?
 - (d) What is the probability that out of 5 shots, she will hit a duck exactly three times? Will this probability double if she makes 10 shots? (You can use the calculator for computing the answers)
 - (e) What is the probability that she hits a duck half times or more if she fires 5 times (that is, 3, 4, or 5 hits)? What about if she fires 10 times (that is 5, 6, 7, 8, 9, or 10 hits)?
 - (f) What is the most likely number of hits out of 5 shots? And out of 10 shots?
- **5.** At a fair, they offer you to play the following game: you are tossing small balls in a large crate full of empty bottles; if at least one of the balls lands inside a bottle, you win a stuffed toy (worth about \$5). Unfortunately, it is really impossible to aim, so the game is just a matter of luck (or probability theory): every ball you toss has a 20% probability of landing inside the bottle.
 - (a) If you are given three balls, what is the probability that all three will be hits? That all three will be misses? That at least one will be a hit?
 - (b) Same questions for five balls.
 - (c) What about seven balls?
 - (d) How much should the organizers charge for 3 balls to break even? What about for 5 balls?