
MATH 7B: HANDOUT 7 [2022/11/06]
GEOMETRIC SEQUENCES

GEOMETRIC SEQUENCES

A sequence of numbers is a geometric sequence or geometric progression if if the next number
in the sequence is the current number times a fixed constant called the common ratio or q.
Example: The sequence 6, 12, 24, 48, . . . is a geometric sequence because the next number is ob-
tained from the previous by multiplication by q = 2.

We can also find the n-th term if we know the 1st term and q.
Example: What is a10 in the example above?

a1 = 6

a2 = a1q = 6 · 2 = 12

a3 = a2q = (a1q)q = a1q
2 = 6 · 22 = 24

The pattern is:

an = a1q
n−1

a10 = a1q
9 = 6 · 29 = 6 · 512 = 3072

Properties of a Geometric Sequence. Any term is the geometric mean of its neighbors:

an =
√
an−1 · an+1

Proof:

an = an−1q

an = an+1/q

Multipluying these two equalities gives us:

a2n = an−1 · an+1

from where we can get what we need. �

Sum of a Geometric Sequence.

Sn = a1 + a2 + a3 + · · ·+ an =
a1(1− qn)

1− q

Proof: To prove this, we write the sum and multiply it by q:

Sn = a1 + a2 + · · ·+ an

qSn = qa1 + qa2 + · · ·+ qan

Now notice that qa1 = a2, . . . qa2 = a3, . . . , qan = an+1, etc, so we have:

Sn = a1 + a2 + · · ·+ an

qSn = a2 + a3 + · · ·+ an+1

1



Subtracting the second equality from the first, and canceling out the terms, we get:

Sn − qSn = (a1 − an+1), or

Sn(1− q) = (a1 − a1q
n)

Sn(1− q) = a1(1− qn)

from which we get the formula above. �

HOMEWORK

1. Write the first 5 terms of a geometric progression if a1 = −20 and q = 1/2.
2. What are the first two terms of the geometric progressions a1, a2, 24, 36, 54, . . . ?
3. Find the common ratio of the geometric progressions 1/2,−1/2, 1/2, . . . . What is a10?
4. Calculate:

1

2
+

1

22
+

1

23
+

1

24
+ · · ·+ 1

210
.

5. Calculate:
1− 2 + 22 − 23 + 24 − 25 + · · · − 215

6. Calculate:
1 + x+ x2 + x3 + x4 + · · ·+ x100

7. A geometric progression has 99 terms, the first term is 12 and the last term is 48. What is
the 50th term?

8. If we put one grain of wheat on the first square of a chessboard, two on the second, then
four, eight, . . . , approximately how many grains of wheat will there be? (you can use an
approximation 210 = 1024 ≈ 103).

Can you estimate the total volume of all this wheat and compare with the annual wheat
harvest of the US, which is about 2 billion bushels. (A grain of wheat is about 10 mm3; a
bushel is about 35 liters, or 0.035 m3)

9. Musicians use special notations for notes, i.e. sound frequencies. Namely, they go as follows:
. . . , A, A], B, C, C], D, D], E, F, F], G, G], A, A], . . .

The interval between two notes in this list is called a halftone; the interval between A and
the next A (or B and next B, etc.) is called an octave. Thus, one octave is 12 halftones. (If
you have never seen it, read the description of how it works in Wikipedia.)

It turns out that the frequencies of the notes above form a geometric (not an arithmetic!!)
sequence: if the frequency, say, of A in one octave is 440 hz, then the frequency of A] is 440r,
frequency of B is 440r2, and so on.
(a) It is known that moving by one octave doubles the frequency: if the frequency of A in

one octave is 440 hz, then the frequency of A in the next octave is 2 × 440 = 880 hz.
Based on that, can you find the common ratio r of this geometric sequence?

(b) Using the calculator, find the ratio of frequencies of A and E (such an interval is called
a fifth). How close is it to 3 : 2?

Historic reference: the above convention for note frequencies is known as equal tempera-
ment and was first invented around 1585. However, it was not universally adopted until the
beginning of 19th century. One of the early adopters of this tuning method was J.-S. Bach,
who composed in 1722–1742 a collection of 48 piano pieces for so tuned instruments, called
Well-Tempered Clavier. Find them and enjoy! If you want to know how musical instruments
were tuned before that, do your own research.]
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