MATH 7: HOMEWORK 22 Invariants, and asymptotes April 3, 2022

1. Definition for sin and cos of an angle

As we discussed, for any angle α , we can find invarians : (sine) $sin\alpha$ and (cosine) $cos\alpha$

In general, for a right-angle triangle with hypothenuse not equal to 1, the *sina* and *cosa* of the angle are defined as:

$$sina = \frac{\text{opposite side}}{\text{hypothenuse}}$$

$$cosa = \frac{\text{adjacent side}}{\text{hypothenuse}}$$

This is because the definitions on **sin** and **cos** do not really depend on size of the triangle, but only the angle itself. Since any two right triangles with the same angles are similar, it shows that if we have a right triangle with angle α and hypotenuse α , then the sides will be α and α a

$$sina = \frac{\text{opposite side}}{\text{hypothenuse}} = \frac{c \ sina}{c}$$

$$cosa = \frac{\text{adjacent side}}{\text{hypothenuse}} = \frac{c \ cosa}{c}$$

Example: Consider the angle a in the following triangles:

$$sina = \frac{\text{opposite side}}{\text{hypothenuse}} = \frac{4}{5} = \frac{8}{10} = \frac{12}{15}$$

$$cosa = \frac{\text{adjacent side}}{\text{hypothenuse}} = \frac{3}{5} = \frac{6}{10} = \frac{9}{15}$$

2. Table with values for trigonometric functions

Table with values for trigonometric functions								
	Function	Notation	Definition	00	30 ⁰	45 ⁰	60 ⁰	90 ⁰
	sine	sin(a)	opposite side hypothenuse	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
	cosine	cos(a)	adjacent side hypothenuse	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Homework problems

1. As we discussed in class, please find:

 $sin(\angle B)$, $cos(\angle B)$, $sin(\angle BAD)$,

 $cos(\angle BAD)$

- 2. Which one is greater?
 - a. $0 \text{ or } \sin 0^0$
 - b. $1 \text{ or } \sin 30^{\circ}$
 - c. $\sin 45^{\circ} \text{ or } \cos 45^{\circ}$
 - d. $\cos 60^{\circ} \text{ or } \sin 30^{\circ}$
- 3. Plot these functions, clearly define asymptotes:

a.
$$y = \frac{1}{x+3} - 3$$

b.
$$y = \frac{1}{3-x} - 3$$

c.
$$y = x - \frac{1}{x}$$