MATH 10 ASSIGNMENT 10: OPEN AND CLOSED SETS

DEC 4, 2022

Definition 1. A metric space is a set X with a distance function: for any $x, y \in X$ we have a real number d(x, y) such that

- **1.** d(x,y) = d(y,x)
- **2.** $d(x,y) \geq 0$ for any x,y
- **3.** d(x,y) = 0 if and only if x = y
- **4.** Triangle inequality: $d(x,y) + d(y,z) \ge d(x,z)$.

Usual examples are \mathbb{R} , \mathbb{R}^2 , ..., but there are other examples as well.

Given a point $x \in X$ and a positive real number ε , we define ε -neighborhood of x by

$$B_{\varepsilon}(x) = \{ y \in X \mid d(x, y) < \varepsilon \}.$$

If $S \subset X$, denote by S' the complement of S. Then, for any $x \in X$, we can have one of three possibilities:

- 1. There is a neighborhood $B_{\varepsilon}(x)$ which is completely inside S (in paritcular, this implies that $x \in S$). Such points are called *interior points* of S; set of interior points is denoted by Int(S).
- **2.** There is a neighborhood $B_{\varepsilon}(x)$ which is completely inside S' (in paritcular, this implies that $x \in S'$). Thus, $x \in \text{Int}(S')$.
- **3.** Any neighborhood of x contains points from S and points from S' (in this case, we could have $x \in S$ or $x \in S'$). Set of such points is called the *boundary* of S and denoted ∂S .

Definition 2. A set S is called *open* if every point $x \in S$ is an interior point: S = Int(S).

A set S is called closed if $\partial S \subset S$.

Homework

1. Show that set \mathbb{R}^2 with distance defined by

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$$

is a metric space. (This distance is sometimes called Manhattan or taxicab distance — can you guess why?)

- 2. For each of the following subsets of \mathbb{R} , find its interior and boundary and determine if it is open, closed, or neither.
 - (a) Set $\mathbb{N} = \{1, 2, 3, \dots\}$.
 - (b) Interval [0, 1]
 - (c) Open interval (0,1)
 - (d) Interval [0,1).
 - (e) Set of all rational numbers
 - (f) Set consisting of just two points {0, 1}
 - *(g) Set $x^3 + 2x + 1 > 0$

Are there any subsets of \mathbb{R} which are both open and closed?

- 3. Show that a set S is open if and only if its complement S' is closed.
- *4. For a set S, let $\overline{S} = S \cup \partial S = \{x \mid \text{ In any neighborhood of } x$, there are elements of $S\}$. Prove that \overline{S} is closed. (It is called the closure of S.)
- 5. Show that union and intersection of two open sets is open. Is it true if we replace two sets by any collection of open sets?

Same question about closed sets.

*6. Consder the set P of all polynomials in variable x with real coefficients. Define the **norm** of a polynomial by

$$||p|| = 2^{-n}$$
 if $p(x) = x^n(a_0 + a_1x + ...)$, $a_0 \neq 0$

For example, for any polynomial that has non-zero constant term, ||p|| = 1; for a polynomial which has zero as a root of multiplicity n, $||p|| = 2^{-n}$.

Define now distance between two polynomials by

$$f(f,g) = ||f - g||.$$

For example, distance between $1+x+x^2+x^7$ and $1+x+x^3$ is 2^{-2} , since their difference is $x^2-x^3+x^7$. Prove that this satisfies the properties of distance; moreover, in this case we have a stronger condition: given 3 polynomials f, g, h, we have

$$d(f,h) \le \max(d(f,g),d(g,h))$$