HW 10, Dec. 5th.

Electronegativity is a relative ability of atoms to attract electrons while binding to other atoms. It is an ability to polarize a covalent bond.

The difference in electronegativities of atoms defines the nature of the bond between them. For mostly covalent bond the difference is < 0.4, for polar it is between 0.4 and 2, and for ionic bonds it is >2. The table below gives electronegativities of different atoms.

E.g. the bond in O=O molecule is covalent: 3.44-3.44 = 0, the bond in H-F molecule is polar covalent: 3.98-2.2 = 1.78, and the bond K-O in K₂O is ionic: 3.44-0.82=2.62

Electronegativity:

Element	Electronegativity	Element	Electronegativity
Cs	0.79	Н	2.20
K	0.82	С	2.55
Na	0.93	S	2.58
Li	0.98	l	2.66
Ca	1.00	Br	2.96
Mg	1.31	N	3.04
Ве	1.57	Cl	3.16
Si	1.90	0	3.44
В	2.04	F	3.98
Р	2.19		

Question 1

Determine the nature of the bond and put the compounds below into on of the following three groups: a) with covalent bonds; b) with polar covalent bonds; c) with ionic bonds

PH₃, CaO, Br₂, BeCl₂, CsBr, S₈, BF₃, H₂, Li₂O

If the octet rule requires multiple bonds can form between two atoms (each bond is two shared electrons). These bonds are called double or triple bonds. E.g. oxygen can form a molecule from two oxygen atoms only when there are two shared electron pairs between the atoms:

Or a triple bond can be formed in the case of N₂:

Question 2

Based on the atoms' electron configurations and the octet rule write down Lewis formulas for the following compounds that include: 1) two atoms of $_6$ C and four atoms of $_1$ H; 2) two atoms of $_6$ C and two atoms of $_1$ H. What is the bond order (=number of bonds) between the carbons in these two compounds? Write down their structural formulas.

Question 3

Chemical compound has formula XY

where X is a positive ion with the following electron configuration:

$$1s^22s^22p^63s^23p^6$$

and Y is a negative ion of this configuration:

$$1s^22s^22p^6$$

Write down chemical formulas for two such compounds.