Mole Ratio Worksheet

- 1) Given this equation: $N_2 + 3 H_2 \longrightarrow 2 NH_3$, write the following molar ratios:
 - a) N₂ / H₂
 - b) N₂ / NH₃
 - c) H₂ / NH₃
- 2) Given the following equation: $8 H_2 + S_8 ---> 8 H_2 S$, write the following molar ratios:
 - a) H2/H2S
 - b) H₂ / S₈
 - c) H₂S / S₈
- 3) Answer the following questions for this equation: $2 H_2 + O_2 ---> 2 H_2O$
 - a) What is the H₂ / H₂O molar ratio?
 - b) Suppose you had 20 moles of H₂ on hand and plenty of O₂, how many moles of H₂O could you make?
 - c) What is the O₂ / H₂O molar ratio?
 - d) Suppose you had 20 moles of O_2 and enough H_2 , how many moles of H_2O could you make?
- 4) Use this equation: $N_2 + 3 H_2 ---> 2 NH_3$, for the following problems
 - a) If you used 1 mole of N2, how many moles of NH3 could be produced?
 - b) If 10 moles of NH₃ were produced, how many moles of N₂ would be required?
 - c) If 3.00 moles of H₂ were used, how many moles of NH₃ would be made?
 - d) If 0.600 moles of NH₃ were produced, how many moles of H₂ are required?

Mole Ratio Worksheet

1.	Consid	der the chemical reaction represented by the equation below:
		3 MgCl_2 + $2 \text{ Al} \rightarrow 3 \text{ Mg} + 2 \text{ AlCl}_3$
	a.	If 8 moles of magnesium chloride react with enough aluminum, how many moles of aluminum chloride are produced?
	b.	How many moles of magnesium chloride are needed to with 10 moles of aluminum?
2.	Consid	ler the following chemical reaction:
		N_2 + 3 H_2 \rightarrow 2 NH_3
	a.	How many moles of nitrogen gas are needed to react with to react with 7.5 moles of hydrogen?
	b.	How many moles of ammonia would you get if 4.5 moles of hydrogen gas reacted?
	c.	How many moles of nitrogen gas are needed in order to produce 5 moles of NH ₃ ?
3.	Consid	ler the combustion of methane (CH ₄).
	a.	How many moles of carbon dioxide are obtained when 20 moles of methane are burned?
	b.	If only 15 moles of oxygen are available, how many moles of methane will burn?
	c.	During combustion, 12 moles of carbon dioxide were obtained. How many mole of water were also obtained?