Distance and displacement in 1D

Distance:

d

The distance is just a measure of length of the path followed by the object. It can only be positive or zero.

Displacement:

$$\Delta x = x_f - x_i$$

 $x_f \rightarrow$ final position in x axis. $x_i \rightarrow$ initial position in x axis. The displacement tells us the length and direction of a movement. Its sign matters!

In science, the Greek letter Δ usually represents the change or difference of a quantity. For example, Δt would represent the change in time between two events.

Instantaneous Velocity and Speed

Earlier, we defined Average velocity: between times t_i and t_f :

$$\vec{v} = \frac{\Delta x}{\Delta t}$$

$$x_i
ightharpoonup$$
 Initial position $x_f
ightharpoonup$ Final position

$$\Delta x = x_f - x_i \rightarrow \text{Displacement}$$

$$\Delta t = t_f - t_i \quad \longrightarrow \quad \text{Travel time}$$

Instantaneous velocity tells you how fast an object moves right now, at specific time t. The formula is the same as above, but Δt must be as small as possible. Similarly, we can define instantaneous speed.

Homework 4

Problem 1.

A straight walkway connects a house with a beach. A dog named Einstein runs along that walkway towards the beach with speed 4 m/s, for 5 minutes. After that, the dog turns back and runs for another 10 minutes with speed 3m/s. Find:

- a) The total distance travelled, d.
- b) The total displacement of the dog, Δx . Let the positive direction be towards the beach.
- c) Average *speed* of the dog.
- d) Average *velocity* of the dog.

Problem 2

A Lion rest under a palm tree somewhere near the Earth's equator.

a) Find the speed of the Lion due to the Earth's spin about its axis. Express the result in m/s, using scientific notation. Assume that the circumference of the Earth is C=40,000km.