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Theory recap

Last time we discussed potential energy. We learned that total mechanical energy, which is
the sum of kinetic and potential energies, is conserved if an object moves under the influence
of gravity force only. Today we will further discuss how presence of other forces alters the
law of conservation of mechanical energy.

As a reminder, previously we discussed another conserved quantity - momentum. Mo-
mentum changes when there is an external force. Momentum change is equal to impulse - a
product of force and time.

Forces could change mechanical energy as well. For energy the ”analogue” of impulse is
work: a product of force and distance. If force F acts on some object in the direction of
motion and this object moves at distance d, work is defined as

W = Fd

First, let us check that dimension of work is the same as dimension of energy. Force is

measured in Newtons and 1 N = 1
kg ·m
s2

. Therefore the product of force and distance

has dimension
kg ·m2

s2
which is exactly the same as J which we defined as a unit of kinetic

energy - unit of mass times square of unit of speed.
For momentum the equation for its change was simple: ∆~p = ~J where ∆~p is the change

of momentum and ~J is impulse. For energy there is a similar relation between the change of
kinetic energy and work:

(1) ∆Ekin = W

Recall that when we first defined work above, we were only talking about forces in the
same direction as displacement. What if they are not in the same direction? The answer is
that then we should take displacement along the direction of force. If force is to the right,
to calculate the work it only matters how far to the right an object moves. If it moves some
distance d to the right then work of force F is W = Fd, as we discussed before. If it moves
distance d to the left, it is the same as −d to the right, so work becomes negative: W = −Fd.
If under the influence of the same force the object moves neither to the left nor to the right,
just straight forward or backward, then work is just zero. So, if displacement makes 90◦

with force, work is 0. Because of this normal force does not change energy. Normal force is
always at 90◦ to the surface and displacement us along the surface, so normal force does not
perform any work.

Now let us clarify the relation between work and total mechanical energy, which includes
potential energy in addition to kinetic energy. The discussion below goes a bit beyond
what we have discussed in the class, so it can be skipped until the summary.



Let us look at an example: we lift a block of mass m
to height h with the force F exactly equal to its gravity
force mg so that it maintains its velocity. What work
does force F perform? F is upwards, displacement h is
also upwards, so

WF = Fh = mgh

(as we take F = mg). What work did gravity perform?
The force of gravity mg is pointing down but displace-
ment is up, so

Wg = −mgh.

How did kinetic and potential energy change? Since the net force on the block is zero, it
moves with constant speed, therefore its kinetic energy does not change:

∆Ekin = 0.

At the same time potential energy increases by

∆Epot = mgh.

Total mechanical energy therefore increases by

∆Emech = ∆Ekin + ∆Epot = mgh.

All these changes in different quantities are summarized at a table below.

WF Wg ∆Ekin ∆Epot ∆Emech

mgh −mgh 0 mgh mgh

Another way of seeing that the change in kinetic energy is zero is through the total work
WF + Wg, done by all the forces:

∆Ekin = WF + Wg = mgh−mgh = 0.

Let us notice in our table that ∆Epot = −Wg. This is a general relation between potential
energy and work done by the gravity force. Using this relation our previous relation for
change of kinetic energy could be transformed as

∆Ekin = Wall = Wg + WF =⇒ ∆Ekin −Wg = ∆Ekin + ∆Epot = ∆Emech = WF .

The last relation is our desired result (called the work-energy theorem).
Summary Let us rewrite work-energy theorem once again clearly:

(2) ∆Emech = Wexcept gravity,

where Wexcept gravity denotes the work done by all forces other than gravity.
Let me stress that our derivation shows that equations (1) and (2) are completely equiv-

alent but it is important not to confuse them. If we already accounted for the gravity force
in energy by including potential energy we should not include the work of gravity force into
the right hand side.



Why did we need to derive equation (2) if it’s completely equivalent to equation (1)? It is
often more convenient to use. From the definition of work it might seem that work performed
by some force depends on the trajectory the object follows. For some forces, such as friction,
it is certainly true. Such forces cannot be accounted for through the potential energy and
their work always should be calculated explicitly. But for other forces, such as gravity, work
only depends on the initial and final positions and it does not matter which trajectory the
object takes between this points. This makes it possible to introduce potential energy which
only depends on position. Calculating potential energy which depends just on the position is
generally simpler than calculating work that a priori depends on the whole trajectory. This
is why equation (2) is so convenient.

Homework

1. Find the work of the friction force which is necessary to stop a 1000 kg car moving at
a speed of 72 km/h. Having found the work, use it to find braking distance. Friction
coefficient is 0.1.

2. A water pump lifts 20 kg of water per second to the water supply tank which is 10 m
over the ground level. What work is performed by the pump per 1 hour?

3. Compare the work done by a car’s engine to accelerate the car from 0 km/h to 27
km/h with the work which is necessary to accelerate the car from 27 km/h to 54
km/h.

*4. A beam of charged particles with different masses moves
towards a region with constant electric field. It is not
important to us here what electric field is, the only thing
we need to know is that in that region a constant force
F acts on every particle (in the direction opposite to
the initial motion). Width of this region is l. Speed of
particles in the beam is the same and equal to v. What
minimal mass m0 should a particle have in order to get
to the other side of the region with electric field? What
will be the speed of the particle after it moves out of
this region if its mass is m? Consider both the case
m > m0 and case m < m0. Gravity could be neglected
in this problem.
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