Acceleration

Acceleration:

$$a = \frac{\text{change in velocity}}{\text{change in time}} = \frac{\Delta v}{\Delta t}$$

Standard units of acceleration: m/s²

If there were no air resistance, all objects in Earth

gravity would fall with the same acceleration,

 $g=9.81 \text{ m/s}^2$

(directed downward)

Galileo Galilei's experiment in Pisa (possibly, a legend)

Homework 7

Problem 1.

A car starts at rest at t=0 s. The car accelerates at a=6 $^m/_{s^2}$ until it reaches a velocity of v=42 $^m/_s$. (a) How long did it take for the car to reach this velocity? The car kept this speed for 5s, until the driver saw a police car in the horizon. The driver slammed the brakes bringing the speed of the car down to v=27 $^m/_s$ in just 3s. (b) What was the acceleration of the car during the breaking process?

SHOW YOUR WORK

Problem 2.

In the following graph of v vs. t, draw the behavior of the velocity of the car in the previous problem.

