Ohm's Law

 $V = I \cdot R$

• V is Voltage Drop, the Potential Difference between two ends of a wire (or resistor, light bulb etc). Measured in Volts [V]

• I is Electric Current, the total charge flowing through the wire in 1 sec. Measured in Amperes [A] (Coulomb per second): 1A=1C/s

• **R** is **Resistance** of the wire. Measured in **Ohms** [Ω]. 1 Ω =1V/A

Serial and Parallel Circuits

Serial:

- Currents are the same: I₁=I₂
- Voltage is added: V=V₁+V₂

Parrallel:

- Currents are added: *I=I₁+I₂*
- Voltages are the same: V₁=V₂

Homework

Problem 1

An electric heater is made out of a piece of wire with resistance R= 10 Ω , plugged into a standard 110V outlet. Find the current through this wire, and the overall power of this heater (remember that Power=V*I).

Problem 2

Two resistors , 10 Ω and 20 Ω are connected to a 1.5V battery in parallel. Sketch the circuit, and find the total current flowing via the battery.

You want to replace these two resistors with a single one, so that the current stays the same. How large should be its resistance?