EULER'S THEOREM CONTINUED

MAY 1, 2022

SUMMARY OF PREVIOUS RESULTS

Theorem (Chinese Remainder Theorem). Let m, n be relatively prime. Then for any k, l, the system of congruences

$$x \equiv k \mod m$$
$$x \equiv l \mod n$$

has a solution, and any two solutions differ by a multiple of mn. In particular, x is divisible by both m and n if and only if x is divisible by mn.

Theorem (Fermat's little theorem). Let p be a prime number and let a be a number which is not divisible by p. Then $a^{p-1} \equiv 1 \mod p$.

Theorem (Euler's theorem). If a is relatively prime to n, then $a^{\varphi(n)} \equiv 1 \mod n$.

Here $\varphi(n)$ is Euler's function:

 $\varphi(n) =$ number of remainders modulo n which are relatively prime to n.

To compute Euler's function, one can use the following result.

Theorem. If m, n are relatively prime, then $\varphi(mn) = \varphi(m)\varphi(n)$.

Problems

- 1. Does there exist a power of 3 which ends in 0001?
- **2.** Prove that if p is prime, then for any number $a, a \equiv a^p \equiv a^{1+2(p-1)} \mod p$. More generally, if $k \equiv q \mod (p-1)$, then $a^k \equiv a$
- **3.** Prove that for any $a, a^{11} a$ is a multiple of 66.
- **4.** Prove that $7^{120} 1$ is a multiple of 143.
- 5. Let p, q be different primes. Prove that then, if $k \equiv 1 \mod (p-1)(q-1)$, then $a^k \equiv a \mod pq$.
- 6. Prove that the number 111...1 (16 ones) is divisible by 17. [Hint: what about 99...9?]
- *7. Let p be a prime number. Let us write 1/p as an infinite decimal. Show that the digits (after some point) will be periodically repeating with period which divides p-1. [Hint: try to formulate the rule how each next digit is obtained from the previous one]

Test it for p = 7; for p = 13; p = 17