
A

B

C

O
A’

C’

B’

October 17, 2021 

Geometry.  

“Direct” and “Inverse” Theorems.  

Each theorem consists of premise and conclusion. Premise is a proposition 

supporting or helping to support a conclusion.  

If we have two propositions, 𝐴 (premise) and 𝐵 (conclusion), then we can 

make a proposition 𝐴 
 

⇒  𝐵 (If 𝐴 is truth, then 𝐵 is also truth, 𝐴 is sufficient for 

𝐵, or 𝐵 follows from 𝐴, or 𝐵 is necessary for 𝐴). This statement is sometimes 

called the “direct” theorem and must be proven.  

Or we can construct a proposition 𝐴 
 

⇐  𝐵 (𝐴 is truth only if 𝐵 is also truth, 𝐴 

is necessary for 𝐵, or 𝐴 follows from 𝐵, 𝐵 is sufficient for 𝐴), which is 

sometimes called the “inverse” theorem, and also must be proven.  

While some theorems offer only necessary or only sufficient condition, most 

theorems establish equivalence of two propositions, 𝐴
 

⇔ 𝐵.  

Ceva’s Theorem.  

Definition. Cevian is a line segment in a triangle, which joins a vertex with a 
point on the opposite side. 

Theorem (Ceva). In a triangle 𝐴𝐵C, three 

cevians 𝐴𝐴′, 𝐵𝐵′, and 𝐶𝐶′ are concurrent 

(intersect at a single point 𝑂) if and only if  

|𝐴𝐵′|

|𝐵′𝐶|
∙

|𝐶𝐴′|

|𝐴′𝐵|
∙

|𝐵𝐶′|

|𝐶′𝐴|
= 1 

This theorem was published by Giovanni 
Ceva in his 1678 work De lineis rectis.  

 



Direct Ceva’s theorem. Geometrical proof.  

For the Ceva’s theorem the premise (A) is “Three Cevians in a triangle 𝐴𝐵𝐶, 

𝐴𝐴′, 𝐶𝐶′, 𝐵𝐵′, are concurrent”. The conclusion (B) is,  

|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1. The full statement of the “direct” theorem is 𝐴

 
⇒ 𝐵, 

i.e., 

If three cevians in a triangle 𝐴𝐵𝐶, 𝐴𝐴′, 𝐶𝐶′, 𝐵𝐵′, are concurrent, then 

|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1 is true. From 𝐴 follows 𝐵, 𝐴 

 

⇒ 𝐵. Again, premise in 

the “direct” theorem provides sufficient condition for the conclusion to hold. 

Clearly, the conclusion 𝐵 is the necessary condition for the premise 𝐴 to hold. 

Proof. Consider triangles 𝐴𝑂𝐵, 𝐵𝑂𝐶 and 𝐶𝑂𝐴. Denote their areas 𝑆𝐴𝑂𝐵 , 𝑆𝐵𝑂𝐶 , 

and 𝑆𝐶𝑂𝐴. The trick is to express the desired ratios of the lengths of the 6 

segments, |𝐴𝐵′|: |𝐵′𝐶|, |𝐶𝐴′|: |𝐴′𝐵|, |𝐵𝐶′|: |𝐶′𝐴|, in terms of the ratios of these 

areas. We note that some triangles share altitudes. Therefore,  

|𝐴𝐵′|

|𝐵′𝐶|
=

𝑆𝐴𝐵𝐵′

𝑆𝐵′𝐵𝐶
;  

|𝐴𝐵′|

|𝐵′𝐶|
=

𝑆𝐴𝑂𝐵′

𝑆𝐵′𝑂𝐶
, and so on. 

The above two equalities yield,  

|𝐴𝐵′|

|𝐵′𝐶|
=

𝑆𝐴𝐵𝐵′ − 𝑆𝐴𝑂𝐵′

𝑆𝐵′𝐵𝐶 − 𝑆𝐵′𝑂𝐶
=

𝑆𝐴𝑂𝐵

𝑆𝐵𝑂𝐶
 

Repeating this for the other ratios along the sides of the triangle we obtain,  

|𝐴𝐵′|

|𝐵′𝐶|
∙

|𝐶𝐴′|

|𝐴′𝐵|
∙

|𝐵𝐶′′|

|𝐶′𝐴|
=

𝑆𝐴𝑂𝐵

𝑆𝐵𝑂𝐶
∙

𝑆𝐴𝑂𝐶

𝑆𝐵𝑂𝐴
∙

𝑆𝐵𝑂𝐶

𝑆𝐶𝑂𝐴
= 1, 

which completes the proof.  
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“Inverse” Ceva’s theorem. Geometrical proof. 

Let us formulate the “inverse Ceva’s 

theorem”, the theorem where premise and 

conclusion switch places. 

If in a triangle 𝐴𝐵𝐶 three chevians divide 

sides in such a way that 

|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1  (1) 

holds, then they are concurrent. 𝐴 follows 

from 𝐵, 𝐵
 

⇒ 𝐴, or 𝐴
 

⇐ 𝐵, or, ~𝐴
 

⇒ ~𝐵, in other words if the three cevians of a 

triangle 𝐴𝐵𝐶 are not concurrent, then 
|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
≠ 1. Three cevians 

being concurrent is a necessary condition for the relation  

|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1 to hold.  

Proof. An inverse theorem can often be proven by contradiction (reductio ad 

absurdum), assuming that it does not hold and arriving at a contradiction with 

the already proven direct theorem. Assume that Eq. (1) holds, but one of the 

cevians, say 𝐵𝐵′, does not pass through the intersection point, 𝑂, of the other 

two cevians. Let us then draw another cevian, 𝐵𝐵′′, which passes through 𝑂. 

By direct Ceva theorem we have then, 
|𝐶𝐵′′|

|𝐵′′𝐴|
=

|𝐶′𝐵|

|𝐴𝐶′|


|𝐴′𝐶|

|𝐵𝐴′|
=

|𝐶𝐵′|

|𝐵′𝐴|
, which means 

that 𝐵′ and 𝐵′′coincide, and therefore 𝐴𝐵′, must pass through 𝑂.  

Thus, in the case of Ceva’s theorem premise and conclusion (propositions 𝐴 

and 𝐵) are equivalent, (𝐴
 

⇔ 𝐵), and we can state the theorem as follows 

Theorem (Ceva). Three cevians in a triangle 𝐴𝐵𝐶, 𝐴𝐴′, 𝐶𝐶′, 𝐵𝐵′, are 

concurrent, if and only if 
|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1. 

  



“Inverse” Thales theorem. 

The “inverse” Thales theorem states  

If lengths of segments in the Figure on the 

left satisfy 
|𝐴𝐵′|

|𝐴𝐵|
=

|𝐴𝐶′|

|𝐴𝐶|
, then lines 𝐵𝐶 and 

𝐵𝐶′ are parallel. The proof is similar to the 

proof of Ceva’s “inverse” theorem, by 

assuming the opposite and obtaining a 

contradiction.  

If a theorem establishes the equivalence of two propositions 𝐴 and 𝐵, 𝐴
 

⇔ 𝐵, 

it is actually often the case that the proof of the necessary condition, 𝐴
 

⇐ 𝐵, i. 

e. the “inverse” theorem, is much simpler than the proof of the “direct” 

proposition, establishing the sufficiency, 𝐴 
 

⇒  𝐵. It often could be achieved by 

using the sufficiency condition which has already been proven, and employing 

the method of “proof by contradiction”, or another similar construct.  

Examples of necessary and sufficient statements  

• Predicate 𝐴: “quadrilateral is a square” 

Predicate 𝐵: “all four its sides are equal”  

Which of the following holds: 𝐴 
 

⇒ 𝐵, 𝐴
 

⇐ 𝐵, 𝐴
 

⇔ 𝐵?  

Is 𝐴 necessary or sufficient condition for 𝐵? 

If a quadrilateral is not square its four sides are not equal. Truth or not? 

(𝐴
 

⇐ 𝐵 or ~𝐴
 

⇒ ~𝐵).  

• Predicate 𝐴:  

Predicate 𝐵:  

Which of the following holds: 𝐴 
 

⇒ 𝐵, 𝐴
 

⇐ 𝐵, 𝐴
 

⇔ 𝐵?   
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Similarity and homothety.  

Recap: Central Symmetry. 

Definition. Two points 𝐴 and 𝐴’ 

are symmetric with respect to a 

point 𝑂, if 𝑂 is the midpoint of 

the segment 𝐴𝐴’.  

Definition. Two figures are 

symmetric with respect to a 

point 𝑂, if for each point of one figure there is a symmetric point belonging to 

the other figure, and vice versa. The point 𝑂 is called the center of symmetry.  

Symmetric figures are congruent and can be made to coincide by a 180 degree 

rotation of one of the figures around the center of symmetry.  

Recap: Similarity and homothety.  

Definition. Two figures are homothetic 

with respect to a point 𝑂, if for each point 

𝐴 of one figure there is a corresponding 

point 𝐴′ belonging to the other figure, 

such that 𝐴′ lies on the line (𝑂𝐴) at a 

distance |𝑂𝐴′|  = 𝑘|𝑂𝐴| (𝑘 > 0) from 

point 𝑂, and vice versa, for each point 𝐴′ 

of the second figure there is a 

corresponding point 𝐴 belonging to the 

first figure, such that 𝐴’ lies on the line (𝑂𝐴) at a 

distance |𝑂𝐴|  =
1

𝑘
|𝑂𝐴′| from point 𝑂. Here the 

positive number 𝑘 is called the homothety (or 

similarity) coefficient. Homothetic figures are 

similar. The transformation of one figure (e.g. 

multilateral 𝐴𝐵𝐶𝐷𝐸𝐹) into the figure 

𝐴′𝐵′𝐶′𝐷′𝐸′𝐹′ is called homothety, or similarity transformation.  
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Thales Theorem Corollary 1. The corresponding segments (e.g. sides) of the 

homothetic figures are parallel. 

Thales Theorem Corollary 2. The ratio of the corresponding elements (e.g. 

sides) of the homothetic figures equals 𝑘.  

Exercise. What is the ratio of the areas of two similar (homothetic) figures? 

Definition. Consider triangles, or polygons, such that angles of one of them are 

congruent to the respective angles of the other(s). Sides which are adjacent to 

the congruent angles are called homologous. In triangles, sides opposite to the 

congruent angles are also homologous. 

Definition. Two triangles are similar if (i) angles of one of them are congruent 

to the respective angles of the other, or (ii) the sides of one of them are 

proportional to the homologous sides of the other.  

 

Arranging 2 similar triangles, so that the intercept theorem can be applied 

The similarity is closely related to the intercept (Thales) theorem. In fact this 

theorem is equivalent to the concept of similar triangles, i.e. it can be used to 

prove the properties of similar triangles, and similar triangles can be used to 

prove the intercept theorem. By matching identical angles one can always 

place 2 similar triangles in one another, obtaining the configuration in which 

the intercept theorem applies and vice versa the intercept theorem 

configuration always contains 2 similar triangles. In particular, a line parallel 

to any side of a given triangle cuts off a triangle similar to the given one.  

Similarity tests for triangles. 

• Two angles of one triangle are respectively congruent to the two angles 
of the other 

http://en.wikipedia.org/wiki/Similar_triangles
http://en.wikipedia.org/wiki/File:Intercept_theorem-_Triangles.svg


• Two sides of one triangle are proportional to the respective two sides of 
the other, and the angles between these sides are congruent 

• Three sides of one triangle are proportional to three sides of the other 

Theorem (property of the bisector). The bisector of any angle of a triangle 

divides the opposite side into parts proportional to the 

adjacent sides,  

|𝐴𝐶′|

|𝐶′𝐵|
=

|𝐴𝐶|

|𝐵𝐶|
, 

|𝐵𝐴′|

|𝐴′𝐶|
=

|𝐴𝐵|

|𝐴𝐶|
, 

|𝐶𝐵′|

|𝐵′𝐴|
=

|𝐵𝐶|

|𝐴𝐵|
 

Proof. Consider the bisector 𝐵𝐵′. Draw line parallel to 

𝐵𝐵′ from the vertex 𝐶, which intercepts the extension of 

the side 𝐴𝐵 at a point 𝐷. Angles 𝐵′𝐵𝐶 and 𝐵𝐶𝐷 have 

parallel sides and therefore are congruent. Similarly, are 

congruent 𝐴𝐵𝐵′ and 𝐶𝐷𝐵. Hence, triangle 𝐶𝐵𝐷 is 

isosceles, and |𝐵𝐷|  =  |𝐵𝐶|. Now, applying the intercept 

theorem to the triangles 𝐴𝐵𝐵′ and 𝐴𝐶𝐷, we obtain 
|𝐶𝐵′|

|𝐵′𝐴|
=

|𝐵𝐷|

|𝐴𝐵|
=

|𝐵𝐶|

|𝐴𝐵|
. 

Theorem (property of the external 

bisector). The bisector of the 

exterior angle of a triangle 

intercepts the opposite side at a 

point (𝐷 in the Figure) such that 

the distances from this point to the 

vertices of the triangle belonging to 

the same line are proportional to 

the lateral sides of the triangle.   

Proof. Draw line parallel to 𝐴𝐷 from the vertex 𝐵, which intercepts the side 

𝐴𝐶 at a point 𝐵′. Angles 𝐴𝐵𝐵′ and 𝐷𝐴𝐵 have parallel sides and therefore are 

congruent. Similarly, we see that angles 𝐴𝐶′𝐵 and 𝐴𝐵𝐵′ are congruent, and, 

therefore, |𝐴𝐵′|  =  |𝐴𝐵|. Applying the intercept theorem, we obtain, 
|𝐷𝐵|

|𝐷𝐶|
=

|𝐴𝐵′|

|𝐴𝐶|
=

|𝐴𝐵|

|𝐴𝐶|
.  
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Generalized Pythagorean Theorem.  

Theorem. If three similar polygons, 𝑃, 𝑄 and 𝑅 with 

areas 𝑆𝑃, 𝑆𝑄 and 𝑆𝑅 are constructed on legs 𝑎, 𝑏 and 

hypotenuse 𝑐, respectively, of a right triangle, then,  

𝑆𝑃 + 𝑆𝑄 = 𝑆𝑅 

Proof. The areas of similar polygons on the sides of a 

right triangle satisfy 
𝑆𝑅

𝑆𝑃
=

𝑐2

𝑎2
 and 

𝑆𝑅

𝑆𝑄
=

𝑐2

𝑏2
, or, 

𝑆𝑃

𝑎2
=  

𝑆𝑄

𝑏2
=

𝑆𝑅

𝑐2
. Using the property of a proportion, we may then 

write, 
𝑆𝑃+𝑆𝑄

𝑎2+𝑏2
=  

𝑆𝑅

𝑐2
, wherefrom, using the Pythagorean theorem for the right 

triangle, 𝑎2 + 𝑏2 = 𝑐2, we immediately obtain 𝑆𝑃 + 𝑆𝑄 = 𝑆𝑅 .  

Exercise. Show that for any proportion,  

(
𝑎

𝑏
=

𝑐

𝑑
)

 
⇒ (

𝑎 + 𝑐

𝑏 + 𝑑
=

𝑎

𝑏
=

𝑐

𝑑
) ⋀ (

𝑎 − 𝑐

𝑏 − 𝑑
=

𝑎

𝑏
=

𝑐

𝑑
, 𝑖𝑓 𝑏 ≠ 𝑑) 


