
MATH 8: HANDOUT 16
EUCLIDEAN GEOMETRY 3: TRIANGLE INEQUALITIES.

8. TRIANGLE INEQUALITIES

In this section, we use previous results about triangles to prove two important inequalities which hold for
any triangle.

We already know that if two sides of a triangle are equal, then the angles opposite to these sides are also
equal (Theorem 9). The next theorem extends this result: in a triangle, if one angle is bigger than another,
the side opposite the bigger angle must be longer than the one opposite the smaller angle.

Theorem 11. In △ABC, if m∠A > m∠C, then we must have BC > AB.

Proof. Assume not. Then either BC = AB or BC < AB.
But if BC = AB, then △ABC is isosceles, so by Theorem 9, m∠A =

m∠C as base angles, which gives a contradiction.
Now assume BC < AB, find the point M on AB so that BM = BC,

and draw the line MC. Then △MBC is isosceles, with apex at B. Hence
m∠BMC = m∠MCB (these two angles are denoted by x in the figure.)
On one hand, m∠C > x (this easily follows from Axiom 3). On the other
hand, since x is an external angle of △AMC, by Problem 6 from Handout
14, we have x > m∠A. These two inequalities imply m∠C > m∠A, which
contradicts what we started with.

Thus, assumptions BC = AB or BC < AB both lead to a contradiction.
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The converse of the previous theorem is also true: opposite a longer side, there must be a larger angle.The

proof is left as an exercise.

Theorem 12. In △ABC, if BC > AB, then we must have m∠A > m∠C.

The following theorem doesn’t quite say that a straight line is the shortest distance between two points,
but it says something along these lines. This result is used throughout much of mathematics, and is referred
to as “the triangle inequality”.

Theorem 13 (The triangle inequality). In △ABC, we have AB +BC > AC.

Proof. Extend the line AB past B to the point D so that BD = BC, and join
the points C and D with a line so as to form the triangle ADC. Observe that
△BCD is isosceles, with apex at B; hence m∠BDC = m∠BCD. It is immediate
that m∠DCB < m∠DCA. Looking at △ADC, it follows that m∠D < m∠C; by
Theorem 11, this implies AD > AC. Our result now follows from AD = AB +BD
(Axiom 2) □
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HOMEWORK

Note that you may use all results that are presented in the previous sections. This means that you
may use any theorem if you find it a useful logical step in your proof. The only exception is when you are
explicitly asked to prove a given theorem, in which case you must understand how to draw the result of the
theorem from previous theorems and axioms.

1. (Slant lines and perpendiculars) Let P be a point not on line l, and let Q ∈ l be such that PQ ⊥ l.
Prove that then, for any other point R on line l, we have PR > PQ, i.e. the perpendicular is the
shortest distance from a point to a line.

Note: you can not use the Pythagorean theorem for this, as we haven’t yet proved it! Instead, use
Theorem 11.

2. (Angle bisector). Define a distance from a point P to line l as the length of the perpendicular from P
to l (compare with the previous problem).

Let
−→
OM be the angle bisector of ∠AOB, i.e. ∠AOM ∼=

∠MOB.

(a) Let P be any point on
−→
OM , and PQ, PR – perpen-

diculars from P to sides
−→
OA,

−→
OB respectively. Use

ASA axiom to prove that triangles △OPR, △OPQ
are congruent, and deduce from this that distances

from P to
−→
OA,

−→
OB are equal.

(b) Prove that conversely, if P is a point inside angle
∠AOB, and distances from P to the two sides of
the angle are equal, then P must lie on the angle

bisector
−→
OM
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These two statements show that the locus of points equidistant from the two sides of an angle is
the angle bisector

3. Prove that in any triangle, the three angle bisectors intersect at a single point (compare with the
similar fact about perpendicular bisectors)


