MATH 8 HANDOUT 24: CONGRUENCES CONTINUED

Reminder: Euclid's Algorithm

Recall that as a corollary of Euclid's algorithm we have the following result:

Theorem. An integer m can be written in the form

$$m = ax + by$$

if and only if m is the multiple of gcd(a, b).

Moreover, Euclid's algorithm gives us an explicit way to find x, y. Thus, it also gives us a way of solving congruences

 $ax \equiv m \mod b$

As a corollary we get this:

Theorem. Equation

$ax \equiv 1 \mod b$

has a solution if and only if a, b are relatively prime, i.e. if gcd(a, b) = 1.

Problems

- 1. Find the last two digits of $(2016)^{2019}$.
- **2.** Recall that $n! = 1 \cdot 2 \cdots n$.
 - (a) How many times 2 appears in the prime factorization of 25! ?
 - (b) In how many zeroes does the number 25! end?
- **3.** (a) Find $10^n \mod 11$ (the answer depends on n)
 - (b) Find remainder upon division of 11 of the number 457289 (without doing the long division!).
 - (c) Can you suggest a test to check if a number is divisible by 11, of the same sort as the familiar test for divisibility by 3.
- **4.** Prove that for any integer n, $n^9 n$ is a multiple of 5. [Hint: can you prove it if you know $n \equiv 1 \mod 5$? or if $n \equiv 2 \mod 5$? or ...]
- (a) Find the inverses of the following numbers modulo 14 (if they exist): 3; 9; 19; 21
 (b) Of all the numbers 1–14, how many are invertible modulo 14?
- (a) Find inverse of 3 modulo 28.
 (b) Solve 3x ≡ 7 mod 28 [Hint: multiply both sides by inverse of 3...]
- 7. Find all solutions of the following equations
 - (a) $5x \equiv 4 \mod 7$
 - (b) $7x \equiv 12 \mod 30$
- *8. (a) Let p be an odd prime. Consider the remainders of numbers 2, 4, 6, ..., 2(p-1) modulo p. Prove that they are all different and that every possible remainder from 1 to p 1 appears in this list exactly once. [Hint: if 2x ≡ 2y, then 2(x y) ≡ 0.] Check it by writing this collection of remainders for p = 7.
 - (b) Use the previous part to show that

$$1 \cdot 2 \cdots (p-1) \equiv 2 \cdot 4 \cdots 2(p-1) \mod p$$

Deduce from it

$$2^{p-1} \equiv 1 \mod p$$

(c) Show that for any a which is not a multiple of p, we have

 $a^{p-1} \equiv 1 \mod p$