MATH 7 ASSIGNMENT 21: REVIEW TOURNAMENT - QUADRATIC POLYNOMIALS

APR 24, 2022

Today's battle will review all the main points we covered on dealing with quadratic polynomials.

HOMEWORK

- **1.** Factor (i.e., write as a product) the following expressions. For example, $x^2 1 = (x 1)(x + 1)$. (a) $9x^2 - 25$
 - (b) $(x-2)^2 10(x-2) + 25$ (c) $x^3 x^2 + \frac{1}{3}x \frac{1}{27}$

 - (d) $x^4 + 4$ [Hint: add and then subtract $4x^2$.]
 - (e) $x^3 27$

Then use the factorized forms to find all real roots of each polynomial in (a) to (e).

- **2.** Let x_1, x_2 be roots of the equation $ax^2 + bx + c = 0$. Using Vieta's formulas, express in terms of a, b and c:
 - (a) $x_1 + x_2$
 - (b) $x_1 x_2$

 - (b) $x_1 x_2$ (c) $x_1^2 + x_2^2$ (d) $(x_1 x_2)^2$ (e) $\frac{1}{x_1} + \frac{1}{x_2}$ (f) $x_1^3 + x_2^3$

Then use these formulas to numerically evaluate (a) through (f) for the case $x^2 + 5x - 7 = 0$.

- **3.** Derive the general formulas to solve the quadratic equation $ax^2 + bx + c = 0$ by following these steps: (a) Suppose it is possible to factor the polynomial $ax^2 + bx + c$ into the form $a(x - x_1)(x - x_2)$ for
 - some numbers x_1 and x_2 . Then prove that x_1 and x_2 are the roots of this polynomial.
 - (b) Using the factorization in the previous part, prove Vieta's formulas

$$x_1 + x_2 = -\frac{b}{a}, \ x_1 x_2 = \frac{c}{a}.$$

- (c) Define the average $x_M = \frac{x_1+x_2}{2}$ and the distance $d = \frac{|x_1-x_2|}{2}$. Use Vieta's formulas to calculate x_M and d in terms of the coefficients a, b and c. [Hint: use your techniques from problem 2]
- (d) Now express the roots x_1 and x_2 in terms of x_M and d. Finally, use this to derive that

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4aa}}{2a}$$

- 4. For each polynomial $ax^2 + bx + c$ below, determine how many roots it has. Find the roots. Then study its sign (by factoring the polynomial). And finally use all that knowledge to sketch the graph $y = ax^2 + bx + c.$
 - (a) $x^2 5x + 5$ (b) $x^2 - 5x - 14$ (c) $-x^2 + 11x - 28$
 - (d) $x^2 x 1$
 - (e) $x^2 + 2x 3$
 - (f) $-x^2 + 6x 9$
- 5. (a) Show that, if $y = ax^2 + bx + c$, then

$$y = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{D}{4a^2} \right], \text{ where } D = b^2 - 4ac$$

- (b) Now show that, if a > 0, the polynomial $y = ax^2 + bx + c$ has a minimum at $x = -\frac{b}{2a}$, and the value there is $-\frac{D}{4a}$. What about when a < 0?
- (c) Of all the rectangles with perimeter 4, which one has the largest area?

- 6. A few university students devised a rocket prototype, but it failed. When launched, the rocket followed a trajectory $h = -d^2 + 101x 100$, where h and d denote the height and d denotes the horizontal displacement on the ground from the launching point at each instant (both are measured in meters).
 - (a) What is the shape of the trajectory?
 - (b) Where did the rocket fall?
 - (c) For which values of d was the rocket at a height bigger than 2000?