MATH 7 ASSIGNMENT 17: ISOMETRIES OF THE PLANE

 $\mathrm{MAR}\ 20,\ 2022$

Today we will work on a few problems with vectors from the previous assignment and learn about isometries.

ISOMETRIES

Let us use a fixed system of coordinates, so that each point corresponds to a pair of real numbers $(x, y) \in \mathbb{R}^2$. Then, from Pythagoras's theorem, we have the distance between two points:

We call an *isometry of the plane* a function $f : \mathbb{R}^2 \to \mathbb{R}^2 : (x, y) \mapsto f(x, y)$ such that $d(f(x_1, y_1), f(x_2, y_2)) = d((x_1, y_1), (x_2, y_2))$ for any pair of points (x_1, y_1) and (x_2, y_2) . We say that the transformation f preserves distances. There are three types of such transformations: rotations, reflections and translations.

ROTATIONS

Here we will always express rotations around the origin, by an angle ϕ which is measured from the x axis in the counterclockwise direction. As we show in the class, a point of coordinates (x, y) is rotated into the point

$$R_{\phi}(x,y) = (\cos \phi \cdot x - \sin \phi \cdot y, \sin \phi \cdot x + \cos \phi \cdot y).$$

Reflections

Another set of isometries of the plane is given by reflections with respect to a line that passes through the origin. We will denote the reflection with respect to the line y = mx by P_m . In particular, the reflections with respect to the x and y axes are

$$P_0(x, y) = (x, -y)$$
$$P_{\infty}(x, y) = (-x, y)$$

1

and

TRANSLATIONS

The third type of isometries are translations. A good way of thinking of them is to consider each point of the plane (x, y) and a vector. Then a $T_{\vec{v}}$ by vector \vec{v} is given by adding \vec{v} to all point vectors (x, y):

$$T_{\vec{v}}(x,y) = (x + v_x, y + v_y)$$

Composition of Isometries

The composition $f_1 \circ f_2$ of two isometries f_1 and f_2 is an isometry:

$$d(f_1 \circ f_2(x, y)) = d(f_1(f_2(x, y))) = d(f_2(x, y)) = d(x, y)$$

Inded, the transformations defined above can be composed in interesting ways, as you will see in the homework.

HOMEWORK

- 1. Let $A = (1,0), B = (-\frac{1}{2}, \frac{\sqrt{3}}{2})$ and $C = (-\frac{1}{2}, \frac{-\sqrt{3}}{2})$ (a) Sketch these three points in the coordinate plane

 - (b) Calculate d(A, B), d(B, C) and d(C, A). Use this to argue that ΔABC is an equilateral triangle.
 - (c) What is the smallest angle ϕ such that the rotation R_{ϕ} preserves the triangle ΔABC . [Hint: consider the rotation which permutes the vertices by: $A \mapsto B, B \mapsto C$ and $C \mapsto A$.]
 - (d) Use the angle ϕ from the previous item in the formula $R_{\phi}(x, y) = (\cos \phi \cdot x \sin \phi \cdot y, \sin \phi \cdot x + \phi)$ $\cos \phi \cdot y$ to show that $R_{\phi}(A) = B$, $R_{\phi}(B) = C$ and $R_{\phi}(C) = A$.
 - (e) Show that the reflection $P_0(x, y) = (x, -y)$ also preserves the triangle.
 - (f) Can you think of other isometries which preserve the triangle (simply permute the vertices)? The set of all of these form the *Dihedral group* of the triangle.
- **2.** Repeat all of problem 1 for the square formed by the vertices A = (1,0), B = (0,1), C = (-1,0) and D = (0, -1).
- **3.** Prove by explicit calculation that $d(P_0(x_1, y_1), P_0(x_2, y_2)) = d((x_1, y_1), (x_2, y_2))$ for any pair of points (x_1, y_1) and (x_2, y_2)
- 4. Prove by explicit calculation that $d(T_{\vec{v}}(x_1, y_1), T_{\vec{v}}(x_2, y_2)) = d((x_1, y_1), (x_2, y_2))$ for any pair of points (x_1, y_1) and (x_2, y_2) and for any vector \vec{v} .

Optional

- 1. Prove by explicit calculation that $d(R_{\phi}(x_1, y_1), R_{\phi}(x_2, y_2)) = d((x_1, y_1), (x_2, y_2))$ for any pair of points (x_1, y_1) and (x_2, y_2) and for any angle ϕ .
- *2. Can you think of a way to express a reflection P_m with respect to a line of arbitrary slope m by composing P_0 with rotations?