MATH 7 HOMEWORK 6: Arithmetic sequences October 31, 2021

1. Arithmetic sequence (progression)

For example:

A sequence of numbers is an arithmetic sequence if the difference between consecutive elements is the same number. This number is called a common difference, d.

1, 5, 9, 13, 17, ... The difference here is d = 4.

Sequence elements (terms) are labeled according to their position in the sequence using a counter **n** as a subscript. The value of the n-th element in a sequence is labeled as a_n . Then, the first term in the sequence has n = 1 and a value of $a_1 = 1$, the second element is $a_2 = 5$, and so on.

We could find any element of a sequence knowing the first element a_1 and the difference d. For example, what is a_{100} ?

$$a_{1} = 1$$

$$a_{2} = a_{1} + d = 1 + 4 = 5$$

$$a_{3} = a_{2} + d = a_{1} + 2d = 1 + 2 \times 4 = 9$$

$$a_{4} = a_{3} + d = a_{1} + 3d = 1 + 3 \times 4 = 13$$

...

$$a_{n} = a_{1} + (n - 1)d$$

So $a_{100} = a_1 + 99d = 1 + 99 \times 4 = 397$

2. Property of an arithmetic sequence

A property of an arithmetic sequence is that any term is the arithmetic mean of its neighbors.

$$a_n = \frac{a_{n-1} + a_{n+1}}{2}$$

Proof:

$$a_n = a_{n-1} + d$$
$$a_n = a_{n+1} - d$$

Add the left and the right sides:

$$2a_n = (a_{n-1} + d) + (a_{n-1} - d)$$

$$2a_n = a_{n-1} + a_{n-1}$$

Dividing by 2:

$$a_n = \frac{a_{n-1} + a_{n-1}}{2}$$

Another property of arithmetic sequences is that we can find the common difference d if we know any 2 terms a_s and a_t

$$d = \frac{a_s - a_t}{s - t}$$

3. Sum of an arithmetic sequence

$$S = a_1 + a_2 + a_3 + \dots + a_n = n \times \frac{a_1 + a_n}{2}$$

<u>Proof:</u> we write the sum in 2 ways, in increasing order and in decreasing order:

 $S = a_1 + a_2 + a_3 + \dots + a_n$ $S = a_n + a_{n-1} + a_{n-2} + \dots + a_1$

Adding up left and right sides:

$$2S = (a_1 + a_n) + (a_2 + a_{n-1}) + (a_3 + a_{n-2}) + \cdots$$
We notice that:

$$a_1 + a_n = a_2 + a_{n-1} = a_3 + a_{n-2} = \cdots$$

$$2S = (a_1 + a_n) \times n$$

$$S = \frac{(a_1 + a_n) \times n}{2}$$

4. Arithmetic sequences -summary

$$a_n = a_1 + (n-1)d$$
$$a_n = \frac{a_{n-1} + a_{n+1}}{2}$$
$$d = \frac{a_s - a_t}{s - t}$$
$$S = \frac{(a_1 + a_n) \times n}{2}$$