MATH 6: HANDOUT 18 GEOMETRY II

1. PARALLEL AND PERPENDICULAR LINES

Theorem 6. Given a line *l* and point *P* not on *l*, there exists exactly one line *m* through *P* which is parallel to *l*.

Proof. Existence.

Let us draw a line k through P which inersects l. Now draw a line m through P such that alternate interior angles are equal: $m \angle 1 = m \angle 2$. Then, by Axiom 4 (alternate interior angles), we have $m \parallel l$.

Uniqueness.

To show that such a line is unique, let us assume that there are two different lines, m_1, m_2 through P both parallel to l. By Theorem 2, this would imply $m_1 \parallel m_2$. This gives a contradiction, because P is on both lines, but parallel lines cannot have any points in common, by definition!

Theorem 7. Given a line *l* and a point *P* not on *l*, there exists a unique line *m* through *P* which is perpendicular to *l*.

2. Sum of angles of a triangle

Definition 1. A triangle is a figure consisting of three distinct points A, B, C (called vertices) and line segments \overline{AB} , \overline{BC} , \overline{AC} . We denote such a triangle by $\triangle ABC$.

Similarly, a quadrilateral is a figure consisting of 4 distinct points A, B, C, D and line segments \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} such that these segments do not intersect except at A, B, C, D.

Theorem 8. The sum of measures of angles of a triangle is 180°.

Proof. Draw a line m through B parallel to \overrightarrow{AC} (possible by Theorem 6).

[By the way: α is a Greek letter, pronounced "alpha"; mathematicians commonly use Greek letters to denote angles]

Then $m \angle 2 = m \angle 1$ as alternate interior angles, and $m \angle 4 = m \angle 3$, also alternate interior angles. On the other hand, by Axiom 3 (angles add up), we have

$$m \angle 4 + m \angle \alpha + m \angle 2 = 180^{\circ}$$

Thus, $m \angle 3 + m \angle \alpha + m \angle 1 = 180^{\circ}$.

Theorem 9. For a triangle $\triangle ABC$, let D be a point on continuation of side AC, so that C is between A and D. Then $m \angle BCD = m \angle A + m \angle B$. (Such an angle is called the exterior angle of triangle ABC.)

Theorem 10. Sum of angles of a quadrilateral is equal to 360°.

Homework

- 1. Prove Theorem 7.
- 2. Prove Theorem 9.
- 3. Prove Theorem 10
- **4.** Deduce a formula for the sum of angles in a polygon with n vertices.
- **5.** In the figure below, all angles of the 7-gon are equal. What is angle α ?

- 6. Show that if, in a quadrilateral *ABCD*, diagonally opposite angles are equal ($m \angle A = m \angle C$, $m \angle B = m \angle D$), then opposite sides are parallel. [Hint: show first that $m \angle A + m \angle B = 180^{\circ}$.]
- 7. The reflection law states that the angles formed by the incoming light ray and the reflected one with the surface of the mirror are equal: $m \angle 1 = m \angle 2$

Using this law, show that a corner made of two perpendicular mirrors will reflect any light ray exactly back: the reflected ray is parallel to the incoming one:

This property – or rather, similar property of corners in 3-D – is widely used: reflecting road signs (including stop signs), tail lights of a car, reflecting strips on clothing are all contributed out of many small reflecting corners so that they reflect the light of a car headlamp exactly back to the car.