# MATH 5: HANDOUT 22 GEOMETRY 2.

#### SUM of angles of an n-gon

Recall that sum of angles of a triangle is 180°. Since a quadrilateral can be cut into 2 triangles, sum of angles of a quadrilateral is  $2 \times 180^{\circ} = 360^{\circ}$ . Similarly, for a pentagon we get  $3 \times 180^{\circ}$ , and for an *n*-gon, the sum of angles is  $(n-2) \times 180^{\circ}$ .

#### Congruence

In general, two figures are called **congruent** if the have same shape and size. We use symbol  $\cong$  for denoting congruent figures: to say that  $M_1$  is congruent to  $M_2$ , we write  $M_1 \cong M_2$ .

Precise definition of what "same shape and size" means depends on the figure. Most importantly, for triangles it means that the corresponding sides are equal and corresponding angles are equal:  $\triangle ABC \cong \triangle A'B'C'$  is the same as:

AB = A'B', BC = B'C', AC = A'C', $\angle A = \angle A', \angle B = \angle B', \angle C = \angle C'.$ 

Note that for triangles, the notation  $\triangle ABC \cong \triangle A'B'C'$  not only tells that these two triangles are congruent, but also shows which vertex of the first triangle corresponds to which vertex of the second one. For example,  $\triangle ABC \cong \triangle PQR$  is not the same as  $\triangle ABC \cong \triangle QPR$ .

## CONGRUENCE TESTS FOR TRIANGLES

By definition, to check that two two triangles are congruent, we need to check that corresponding angles are equal and corresponding sides are equal; thus, we need to check 6 equalities. However, it turns out that in fact, we can do with fewer checks.

**Axiom 1** (Side-Side-Side rule). If AB = A'B', BC = B'C' and AC = A'C' then  $\triangle ABC \cong \triangle A'B'C'$ .

This rule is commonly referred to as SSS rule.

One can also try other ways to define a triangle by three pieces of information, such as two sides and an angle between them. We will discuss it next time.

This rule — and congruent triangles in general — are very useful for proving various properties of geometric figures. As an illustration, we prove the following useful result.

**Theorem.** Let ABCD be a quadrilateral in which opposite sides are equal: AB = CD, AD = BC. Then ABCD is a parallelogram.

*Proof.* Let us draw diagonal BD. Then triangles  $\triangle ABD$  and  $\triangle CDB$  are congruent by SSS; thus, two angles the two angles labeled by letter a in the figure are equal; also, two angles labeled by letter b are also equal. Thus, lines BC and AD are parallel (alternate interior angles!). In the same way we can show that lines AB and CD are parallel. Thus, ABCD is a parallelogram.



(It is also true in the opposite direction: in a parallelogram, opposite sides are equal.)

## Homework

- 1. Let CD be a continuation of side AC in a triangle  $\triangle ABC$ . Show that then  $\angle BCD = \angle A + \angle B$  (such an angle is sometimes called an *exterior angle* of the triangle. [Hint: sum of the angles in a triangle is equal to  $180^{\circ}$ .]
- 2. An *n*-gon is called *regular* if all sides are equal and all angles are also equal.
  - (a) How large is each angle in a regular hexagon (6-gon)?
  - (b) Show that in a regular hexagon, opposite sides are parallel. (This is the reason why this shape is used for nuts and bolts).

[Hint: show that each of the angles labeled by letter a in the figure is equal to  $60^{\circ}$ , and then use theorem about alternate interior angles.]

- **3.** Let ABC be a triangle in which two sides are equal: AB = BC (such a triangle is called *isosceles*). Let M be the midpoint of the side AC, i.e. AM = MC.
  - (a) Show that triangles  $\triangle ABM$  and  $\triangle CBM$  are congruent.
  - (b) Show that angles  $\angle A$  and  $\angle B$  are equal
  - (c) Show that  $\angle AMB = 90^{\circ}$  (hint:  $\angle AMB = \angle CMB$ ).
- 4. Let ABCD be a quadrilateral such that AB = BC = CD = AD (such a quadilateral is called rhombus). Let M be the intersection point of AC and BD.
  - (a) Show that  $\triangle ABC \cong \triangle ADC$
  - (b) Show that  $\triangle AMB \cong \triangle AMD$
  - (c) Show that the diagonals are perpendicular and that the point M is the midpoint of each of the diagonals.

[Hint: after doing each part, mark on the figure all the information you have found — which angles are equal, which line segments are equal, etc: you may need this information for the following parts.]

