Distributive property with squares and cross-products:

1. Remove parenthesis and simplify:		
$3 \cdot (x + 1) + x \cdot (x + 1) = $		
$x \cdot (2x + 3) + 3 \cdot (2x + 3) =$		
2. Remove parenthesis:	x	<u>x 2</u>
(x + 1) (x + 2) =	1	
$(x+3) \cdot (2x+5) =$		
$(x-3) \cdot (2x+5) =$		\square
(3 + x) (4x + a) =		
(3 + x) (4x - a) =		
3. Find which shapes have lines of symmetry and how	w many:	

4. Solve the equations:

a).
$$5 + 2x = 1$$

 $\frac{1}{1 - \frac{1}{x}} = 3$
b). $|5 + 2x| = 1$
c).

5. Analyze symmetries of 3D shapes: planes of symmetry, rotational axes

6. Solve the equations:

a)
$$\frac{3}{2+x} = \frac{1}{2}$$
 b) $\frac{6+x}{2+x} = 2$ d) $\frac{4}{3x+1} = \frac{2}{5}$

7. Use properties of a rhombus to find point $C \in [AB]$ such that |AC| = |BC|.

8. Find the middle of the line segment [*PQ*].

