

1

2

3

4

Warm Up

Multiplication and Division Quiz. Do as many problems as you can in 5 minutes.

55 × 20) =	300 × 7 =	600 × 15 =
30 ×15	=	15 × 40 =	55 × 4 =
2×750) =	20 × 75 =	20 × 65 =
112 ÷ 2	2 =	240 ÷ 6 =	250 ÷ 25 =
160 ÷ 4	40 =	$150 \div 50 =$	320 ÷ 80 =
320 ÷ 4	40 =	325 ÷ 25 =	250 ÷25 =

Homework Review

The $\angle ACB$ is 43⁰. How big (in degrees) will be a complementary angle? How big (in degrees)

will be a supplementary angle?

Complementary angle = _____

supplementary angle = _____

a) Imagine that you have 5 cards, and each card has a different number on it. If the cards only have odd numbers, what computations must you do to get an even result?

b) If the cards only have even numbers, is it possible to get an odd result? What computations must you do to get an odd result? Hint: Consider all 4 types of calculations you know (addition, subtraction, multiplication and division).

A dozen eggs will make four omelets. How many eggs are needed to make:

- a. 8 omelets?
- b. 1 omelet? _____
- c. 9 omelets? _____

How many omelets can be made from?

- d) 2 dozen eggs? _____
- e) 9 eggs? _____
- f) 21 eggs? _____

Simplifying Fractions. Comparing fractions.

These fractions have like denominators, so we compare the numerators.

The denominator tells us there are the same number of pieces in the whole, however one fraction has more of those pieces than the other.

b) Aurora ate three-fourths of a pie and Abigail ate two-thirds of a pie. If both pies were the same

size, then which girl ate more pie?

These fractions have unlike denominators (and unlike numerators). It would be easier to compare them if they had like denominators. We need to convert these fractions to equivalent fractions with a common denominator in order to compare them more easily.

	Aurora: Abigail:	$\frac{3}{4} = \frac{n}{12}$ $\frac{2}{3} = \frac{n}{12}$	$\frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12}$ $\frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12}$				
	Hint: Now yo	bu have to compare $\frac{9}{12}$	$\frac{9}{2}$ and $\frac{8}{12}$				
13	Compare the fractions below. Use the symbols >, =, or < to record your comparisons. Draw a picture if you need to illustrate your answer. a) $2/6 \dots 5/6$ b) $1/2 \dots 3/6$ c) $3/6 \dots 4/8$						
14	show that thes with a picture Here the two have been div four equal par	actions such as 1/2 and se fractions represent t e: large squares are equa vided into two equal pa rts (on the right). The ed in each picture so 1	the same quantity i ally sized which arts (on the left) and same fraction of the	d			
		alent fractions have di	ifferent sized pieces	s, but the same total amoun	t shaded.		
			4				