Lesson 6

Chemistry 0

Fall 2021, L. Tracey Gao

Covalent Bonding-Shared Electron Bonds

- The sharing of electrons between atoms is called a **covalent bond**, which holds the atoms together as a molecule.
- A covalent bond happens if the attractions are strong enough in both atoms and if each atom has room for an electron in its outer energy level.
- Atoms will covalently bond until their outer energy level is full.
- Atoms covalently bonded as a molecule are more stable than they were as separate atoms.

Week 5 Homework

Please draw a picture below and show how the nitrogen and hydrogen atoms share electrons in NH3 molecules using energy levels model.

Week 5 Homework

Please explain why can't a fourth hydrogen atom join the NH3 molecule to make NH4?

When three hydrogen atoms and a nitrogen atom share their electrons with each other, their outer energy levels are full.

Ionic Bonding- Unshared Electron Bonds

- The attractions between the protons and electrons of atoms can cause an electron to move completely from one atom to the other.
- When an atom loses or gains an electron, it is called an ion. The atom that loses an electron becomes a positive ion. The atom that gains an electron becomes a negative ion.
- A positive and negative ion attract each other and form an **<u>ionic bond</u>**.

Ionic Bond in Sodium Chloride

Ionic Bond in Sodium Chloride

- Sodium and chlorine atoms are near each other.
- The protons of the two atoms attract the electrons of the other atom.
- During the interactions between the atoms, the electron in sodium's outer energy level is transferred to the outer energy level of the chlorine atom.

Ionic Bond in Sodium Chloride

• Sodium lost an electron, it has 11 protons, but only 10 electrons. This makes sodium a positive ion with a charge of +1. Chlorine gained an electron it has 17 protons and 18 electrons. This makes chloride a negative ion with a charge of -1.

• The positive sodium ion and negative chloride ion attract one another. They make an **ionic bond** and form the ionic compound NaCl.

Sodium Chloride Crystal

Questions

- What ion is the larger ball with the negative charge?
- What made it negative?
- What is the ion with the positive charge?
- What made it positive?
- What do the image and the model of real salt crystals tell you about the structure of salt?

Ionic Bond in Calcium Chloride (CaCl,)

Key Concepts about Ionic Bond

- The attractions between the protons and electrons of atoms can cause an electron to move completely from one atom to the other.
- When an atom loses or gains an electron, it is called an ion. The atom that loses an electron becomes a positive ion. The atom that gains an electron becomes a negative ion.
- A positive and negative ion attract each other and form an **ionic bond**.

Summary

- Atoms bond with one another in two different ways-
 - Covalent bonds
 - Ionic bonds
- When two nonmetals share one or more electrons, they form a covalent bond.
- When a metal transfers one or more electrons to a nonmental, they form an ionic bond.
- Both types of bonds are based on the same concept: Atoms tend to behave in such a way as to effectively fill their outer energy level.

Energy Levels Model

Metals, Nonmetals, and Metalloids

H	1	nonmetals												He			
Li	Be	motals									B	С	N	0	F	Ne	
Na	Mg		inetals											P	8	C1	Ar
K	Ca	Se	Ti	v	Ca	Min	Fe	Go	3Ni	Св	Za	Gra	Ge	As	Se	Br	Kr
Rb	Se	¥	Zz	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sa	Sb	Te	I	Xe
Cs	Ba	La	Hf	Ta	w	Re	Os	Iz	Pe	Au	Hg	Ti	РЬ	Bi	Po	At	Ra
Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt				metalloids					

Ge	Pr	Nđ	Pm	8m	En	Gđ	Tb	Dy	Ho	Er	Tm	Yb	Lo
Th	Pa	U	Np	Po	Am	C.m	Bk	Cf	Be	Fm	Mid	No	Le

Summary

• There are two main classes of elements:

- Elements that tend to lose valence electrons- Metal
- Elements that tend to gain electrons- Nonmetal
- *Metal* atoms donate all of their valence electrons to *nonmetal* atoms and all the atoms get their outer shells filled. After the electron transfer, the oppositely charged ions attract, and forming an <u>ionic bond</u>.
- *Nonmetals* bond with other *nonmetals* <u>covalently</u> by sharing electrons so that both atoms have a sense of having a filled outer shell.

Exercises

- Determine the total number of electrons in each of the following:
 - He
 - $\begin{array}{c} \circ & Mg \\ \circ & Ca^{2+} \end{array}$
 - \circ O²⁻

Exercises

- Determine the number of valence electrons in each of the following:
 - He
 - $\circ Mg \\ \circ Ca^{2+} \\ \circ O^{2-}$

Exercises

- Indicate whether each of the following bonds is covalently or ionic:
 - $\circ H_2O$ $\circ F_2$ $\circ MgCl_2$ $\circ Na_2O$